U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

LEVEL II BRIDGE SCOUR ANALYSIS FOR STRUCTURE 124000900600 ON ROUTE SC 9, CROSSING THE SANDY RIVER IN CHESTER COUNTY, SOUTH CAROLINA

By Andy W. Caldwell and J. Mike Sullivan

Prepared in cooperation with the SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

Columbia, South Carolina 1995

П
П
П
П

UNIT ABBREVIATIONS

cubic foot per second $$\rm ft^3/s$$ feet per second $$\rm ft/s$$ foot $$\rm ft$$ mile $$\rm mile $\rm mile $\rm mile $\rm mile $\rm square foot $\rm ft^2$$ square mile $$\rm mi^2$$

OTHER ABBREVIATIONS

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical

Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order
level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Level II bridge scour analysis for structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina

by Andy W. Caldwell and J. Mike Sullivan

This report provides the results of the detailed Level II analysis of scour potential at structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina (figure 1 in pocket; figures 5-8). The site is located in the Piedmont physiographic province near the town of Chester in the central part of Chester County. The drainage area for the site is 16.7 mi², and is a predominantly rural drainage basin with little development in recent years. In the vicinity of the study site, the land is covered by moderate to dense hardwoods upstream and grassy fields turning into moderate hardwoods approximately 400 ft downstream.

In the study area, the Sandy River has a meandering channel with a slope of approximately 0.0013 ft/ft (6.9 ft/mi), an average channel top width of 80 ft and an average channel depth of 9 ft. The predominant channel bed material is sand (D_{50} is 0.28 mm) and the predominant bank material is a coarser sand (D_{50} is 0.46 mm). In general, the banks have moderate woody vegetative cover with some bank failure noted at the time of the Level I site visit on July 17, 1990.

The Route SC 9 crossing of the Sandy River is a 180-ft-long, two-lane bridge consisting of two 40-ft and two 50-ft concrete spans, supported by steel and concrete bents with spillthrough abutments. The abutments are protected by riprap. In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream. Additional details describing conditions at the site are included in the Scour Report Summary.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is shown on figure 2.

Pile penetration depths were obtained from the SCDOT bridge plans (docket number 12.388). Pile tip exposure of 9.4 ft and 16.3 ft occurs for the 100- and 500-year discharges, respectively. This exposure occurs at bent 3.

 Table 1. --Remaining pile/footing penetration at piers/bents for the 100- and 500-year discharges at structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina.

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Pile tip/ ³ footing elevation, SCDOT datum (feet)	Pile tip/ footing elevation, USGS datum (feet)	Ground elevation at pier/bent, USGS datum (feet)	Total ⁴ scour depth (feet)	Elevation of scour, USGS datum (feet)	Remaining ⁵ pile/footing penetration (feet)
		100-year	discharge is 4,4	100-year discharge is 4,400 cubic feet per second	r second		
4	40	403.2	402.5	416.1	0.0	416.1	13.6
3	06	398.6	397.9	410.6	22.1	388.5	-9.4
7	140	395.5	394.8	409.8	22.1	387.7	-7.1
		500-year	discharge is 6,6	500-year discharge is 6,600 cubic feet per second	r second		
4	40	403.2	402.5	416.1	6.5	409.6	7.1
٣	06	398.6	397.9	410.6	29.0	381.6	-16.3
2	140	395.5	394.8	409.8	29.0	380.8	-14.0

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans (docket number 12.388).

² Stations are determined from left to right looking downstream.

³ Pile tip/footing elevations obtained from the SCDOT bridge plans. The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier/bent scour depths.

 $^{^5\,\}mathrm{A}$ negative number signifies undermining of pile tip/footing.

Table 2. --Cumulative scour depths at piers/bents for the 100- and 500-year discharges at structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina.

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
<u> </u>	100-year dischar	rge is 4,400 cubi	c feet per second	
4	40	0.0	0.0	0.0
3	90	14.5	7.6	22.1
2	140	14.5	7.6	22.1
	500-year discha	rge is 6,600 cubi	c feet per second	
4	40	1.9	4.6	6.5
3	90	21.1	7.9	29.0
2	140	21.1	7.9	29.0

¹ Pier/bent number corresponds to the South Carolina Department of Transportation bridge plans (docket number 12.388).

NOTE: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

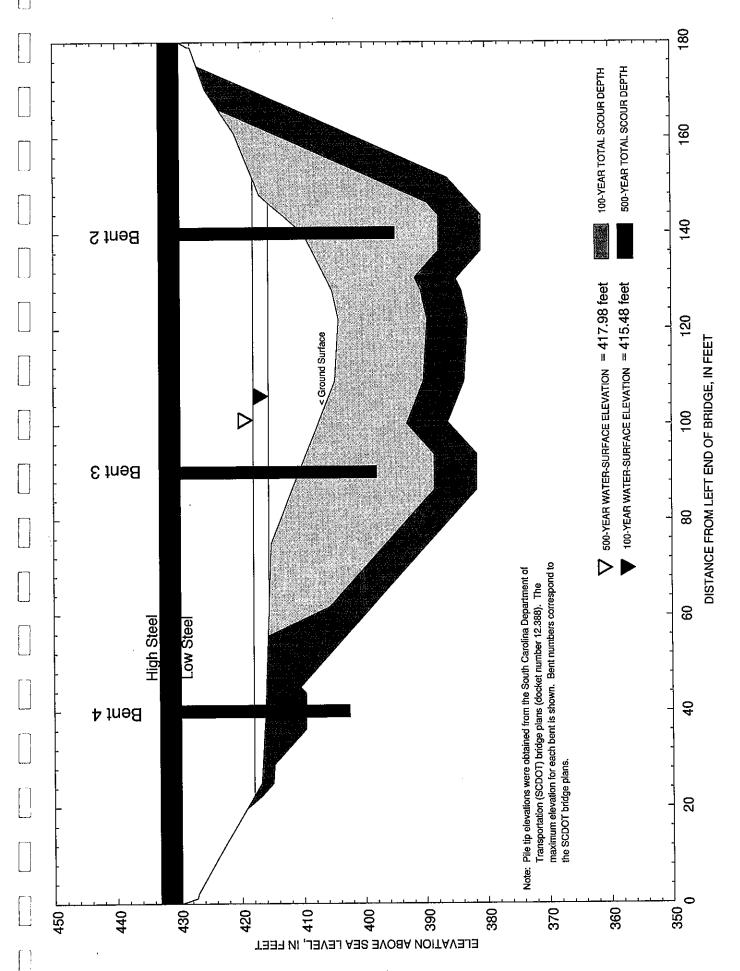


Figure 2.--Total scour depths for the 100- and 500-year discharges at the downstream face of structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina.

			П
			U U
	•		

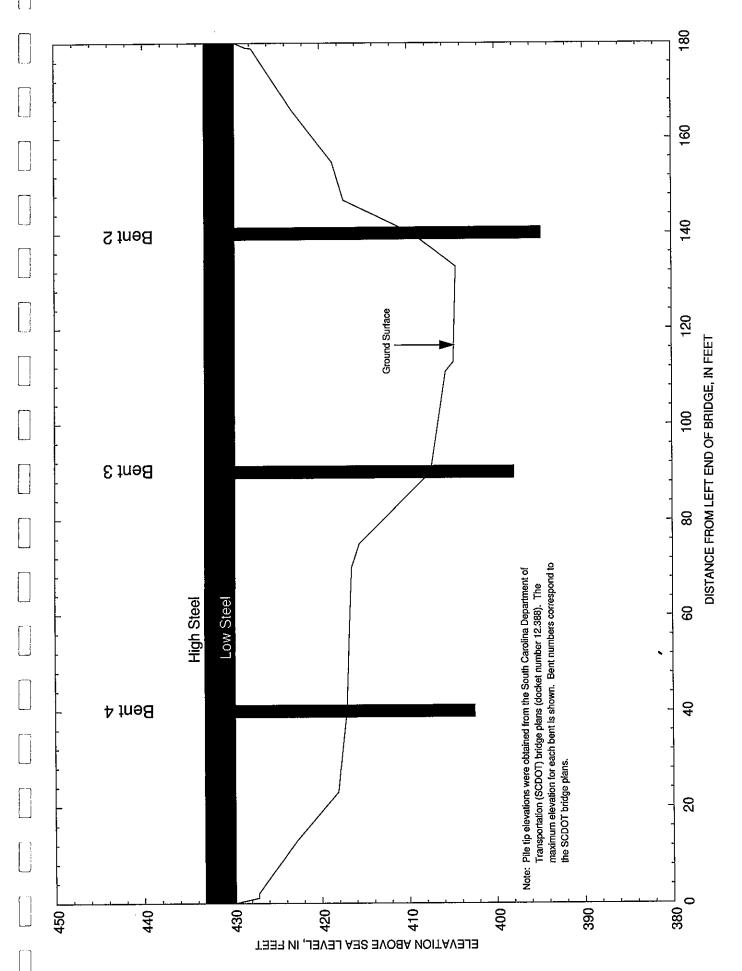


Figure 3.--The upstream face of structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina.

•			
	ı		
		•	

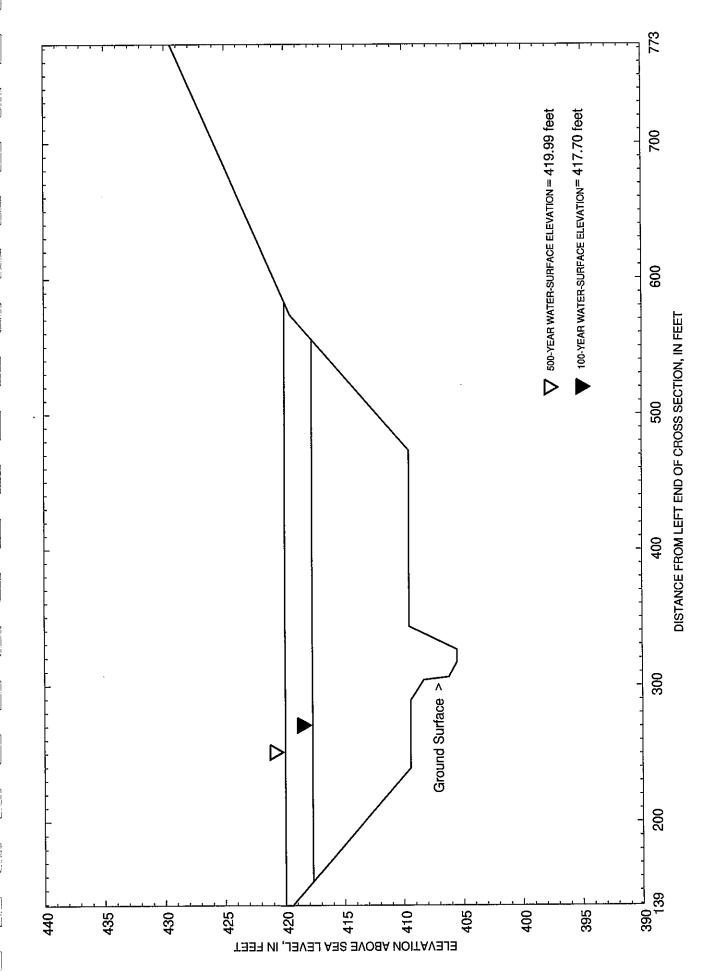


Figure 4.--Approach cross section at structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina.

	Ш
,	

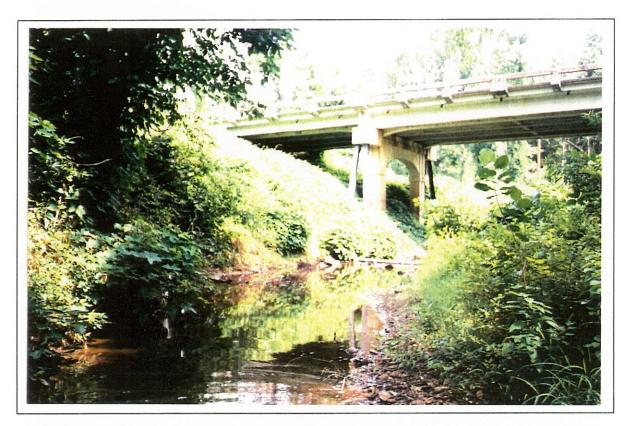


Figure 5.--Structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina as viewed from the upstream channel (July 17, 1990).

Figure 6.--Upstream channel as viewed from the approach cross section of structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina (September 7, 1993).

		П
	,	

Figure 7.--Structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina as viewed from the downstream channel (July 17, 1990).

Figure 8.--Downstream channel as viewed from structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina (July 17, 1990).

SELECTED REFERENCES

Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p. Arneson, L. A., Shearman, J. O., Jones, J. S., 1992, Evaluating scour at bridges using WSPRO: Transportation Research Board Draft Paper, 40 p. Bohman, L. R., 1990, Determination of flood hydrographs for streams in South Carolina: Volume 1. Simulation of flood hydrographs for rural watersheds in South Carolina: U.S. Geological Survey Water-Resources Investigations Report 89-4087, 53 p. Bohman, L. R., 1992, Determination of flood hydrographs for streams in South Carolina: Volume 2. Estimation of peak-discharge frequency, runoff volumes, and flood hydrographs for urban watersheds: U.S. Geological Survey Water-Resources Investigations Report 92-4040, 79 p. Froehlich, D. C., 1989, Local scour at bridge abutments in Ports, M. A., ed., Hydraulic Engineering-Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18. Guimaraes, W. B., and Bohman, L. R., 1991, Techniques for estimating magnitude and frequency of floods in South Carolina, 1988: U.S. Geological Survey Water-Resources Investigation Report, 91-4157, 174 p. Gunter, H.E., Mason, R.R., and Stamey, T.C., 1987, Magnitude and frequency of floods in rural and urban basins in North Carolina: U.S. Geological Survey Water-Resources Investigations Report, 87-4096, 54 p. Laursen, E. M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53. Laursen, E. M., 1963, An analysis of relief bridge scour: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 89, no. HY3, p. 93-118. Richardson, E. V., Harrison, L. J., Richardson, J. R., and Davis, S. R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p. Richardson, E. V., Simons, D. B., and Julien, P. Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016. Richardson, E. V., Simons, D. B., Karaki, S., Mahmood, K., and Stevens, M. A., 1975, Highways in the river environment: hydraulic and environmental design considerations: Federal Highway Administration. Shearman, J. O., 1990, User's manual for WSPRO--a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p. Shearman, J. O., Kirby, W. H., Schneider, V. R., and Flippo, H. N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 U.S. Geological Survey, Interagency Advisory Committee on Water Data, 1982, Guidelines for

determining flood flow frequency, Bulletin 17B of the Hydrology Subcommittee, 190 p.

SCOUR REPORT SUMMARY

ucture Number _	12400	0900600	Stream	Sandy	Kiver	
inty Chester	<u>r</u>		_ Road	SC 9	District _	4
		<u>Descrip</u> l	tion of Bric	<u>lge</u>		
Bridge length _	180	ft Bridge wi	dth <u>35</u>	_ ft M	ax span length	_50 fi
		road (on curve or				
		hrough				
Riprap on abutr	nent? _	Yes	Date of ins _i	pection 7	7-17-1990	
Description of	riprap	Both abutment	s are protecte	ed by 6- to	16-inch granite	riprap.
Is bridge skewe	ed to flo	s on the U/S and I od plain accordi bend in channel?	ing to USGS t	topo map?	Yes Ang	le <u>15</u>
Debris accumu		on bridge at time	Percent o	of channel	Perce	nt of chann
	Date	e of inspection	Percent o	of channel orizontally	Perce	nt of chann ed verticall 0
Level I	Date		Percent o blocked h	of channel orizontally	Perce	ed verticall
Level I Level II Potential	Date	e of inspection	Percent of blocked here of the blocked here of	of channel orizontally	Perce block —	0
Level I Level II Potential upstream Describe any fe	Date for debr of the F	e of inspection 7-17-1990 8-31-1993 ris Low: Cheste	Percent of blocked had blocked	of channel orizontally have been been been been been been been be	Perce block pproximately 1, w (include obse	ed vertically 0 0 ,100 ft ervation dat

Description of Flood Plain

General topo	ography Typical Piedmont topography with rolling hills
 Flood-plair	ı conditions at bridge site: downstream (D/S), upstream (U/S)
Date of ins	pection 8-31-1993
D/S left:	Two- to 3-ft high grass
D/S right:	Two- to 3-ft high grass
U/S left:	Moderate hardwoods with moderate undergrowth
U/S right:	Sparse hardwoods with thick undergrowth
	Description of Channel
Average to _l	width 80 ft Average depth 9.0 ft
Predomina	nt bed material sand Bank material sand
Stream typ	e (straight, meandering, braided, swampy, channelized) Meandering
Vegetative D/S left: D/S right: U/S left:	Thin woody vegetation Thin woody vegetation Moderate woody vegetation
U/S right:	Moderate woody vegetation
date of obs	sppear stable? Yes* If not, describe location and type of instability and servation. *Some bank failure was noted on the upstream left and am right bank at the time of the Level I site visit on 7-17-1990.
Describe at	ny obstructions in channel and date of observation. None observed.

Hydrology

Drainage area 16.7 mi ²	
Percentage of drainage area in physics	graphic provinces:
Physiographic province	Percent of drainage area
Piedmont (high-flow area)	100
	
Is drainage area considered rural or ur	
	pment. No significant urbanization exists in the
basin but there is a potential for futur	re development as the city of Chester expands.
Is there a USGS gage on the stream of	interest? No
USGS gage descr	iption
USGS gage numb	per
Gage drainage ar	rea mi ²
Is there a lake/pond that will significa	ntly affect hydrology/hydraulics?Yes
If so, describe The Chester Reservoir	is approximately 1,100 ft upstream of the Route
SC 9 bridge. A flood hydrograph rout	ing was done and it was concluded that the
reservoir would not affect the 100- a	nd 500-year discharges.
Calc	ulated Discharges
$Q100 - 4.400 \text{ ft}^3/\text{s}$	$Q500 = 6,600 \text{ ft}^3/\text{s}$
~	~
Method used to determine discharges _	Because the basin is in the high-flow region
of South Carolina, the 100- and 500)-year discharges were determined by using
the North Carolina rural regression	n equations (WRIR 87-4096) and methods
described in USGS Bulletin 17B. A	flood hydrograph routing was done and it was
	ot affect the 100- and 500-year discharges
TITLE WORLD WITH THE THE THE THE THE THE THE THE THE T	The state of the s

Brief Description of the Water-Surface Profile Model (WSPRO) Analysis

Datum for WSPRO analysis (USGS survey, sea level, SCI	OOT plans)sea level					
Datum tie between USGS survey and SCDOT plans	Add 0.7 ft to the USGS survey					
datum to obtain the SCDOT plan's datum (docket num	ber 12.388).					
Description of reference marks used to determine USGS datum. BM (15 DOP 1968) is						
a tablet on the upstream right abutment headwall of the						
established elevation of 431.44 ft. RM 2 is a chiseled squ	are on the downstream left					
abutment headwall of the Route SC 9 bridge with a sur	veyed elevation of 431.38 ft.					
	, , , , , , , , , , , , , , , , , , , ,					

Cross Sections Used in WSPRO Analysis

*Cross section ID	Section Reference Distance (SRD) in feet	**How cross section was developed	Comments
EXITA		2	Starting cross section
EXITB	-390	2	Transition cross section
EXIT	-180	2	Exit cross section
FULV	0	2	Full-valley cross section
BRIDG	0	1	D/S bridge face
APPR	215	4	Approach cross section
·			
			

For location of cross sections see topographic map included with report (figure 1).

For more detail on how cross sections were developed see WSPRO input file.

Cross section development: 1) survey at SRD 2) shift of survey data to SRD 3) modification of survey data based on topographic map 4) synthesized by combining channel survey data and topographic contours 5) other

Description of data and assumptions used in developing WSPRO model.

The Sandy River has a relatively uniform flood plain width in the study area, with no downstream natural or man-made contractions of flow that cause significant backwater at the Route SC 9 crossing. Therefore, it was assumed that slope-conveyance methodology would be adequate for estimating the starting water-surface elevation for the water-surface profile computations.

For this study, the WSPRO model requires, as a minimum, an exit cross section one bridge width downstream of the bridge, a full-valley cross section at the downstream bridge face, the bridge cross section, and an approach cross section one bridge width upstream of the bridge. Cross sections at the upstream and downstream faces of the bridge were directly surveyed and the more constricted (downstream) bridge face was used in the WSPRO model. The section reference distance (SRD) at the downstream face of the bridge was set to zero. An exit cross section was surveyed approximately 372 ft downstream of the downstream bridge face and an approach channel cross section was surveyed approximately 199 ft upstream of the upstream bridge face. The approach cross section was synthesized by the slope of the contours on the USGS topographic map. These cross sections were shifted by the channel slope to the appropriate SRD to represent the exit, full-valley, and approach cross sections required by the WSPRO model. In addition, the exit cross section was shifted by the channel slope to SRD -400 and -390 to represent cross sections EXITA and EXITB. Cross section EXITA is the starting cross section which represents the wooded flood plain. Cross section EXITB is a transition cross section to show the change from a wooded flood plain to a grassy flood <u>plain.</u>

Bridge Hydraulics

Average embankment elevation 431.0 ft

Average low steel elevation 429.7 ft

100-year discharge 4,400 ft³/s

Water-surface elevation at D/S bridge face 415.48 ft

Area of flow at D/S bridge face 515 ft²

Average velocity in bridge opening 8.55 ft/s

Maximum WSPRO tube velocity at bridge 10.29 ft/s

Water-surface elevation at Approach section with bridge 417.70 ft

Water-surface elevation at Approach section without bridge 416.22 ft

Amount of backwater caused by bridge 1.48 ft

500-year discharge $\frac{6,600}{ft^3/s}$ Water-surface elevation at D/S bridge face $\frac{417.98}{ft}$ ft

Area of flow at D/S bridge face $\frac{803}{ft^2}$ ft²

Average velocity in bridge opening $\frac{8.22}{ft/s}$ ft/s

Maximum WSPRO tube velocity at bridge $\frac{10.71}{ft/s}$

Water-surface elevation at Approach section with bridge $\frac{419.99}{}$ ft

Water-surface elevation at Approach section without bridge $\frac{418.68}{}$ ft

Amount of backwater caused by bridge $\frac{1.31}{}$ ft

Scour

Describe any special assumptions or considerations made in bridge scour analysis.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 and 2 and a graph of the scour depths is shown on figure 2.

The local pier scour was determined using the Colorado State University pier scour equation (Richardson and others, 1993). Bent 4 is located on the left overbank and was analyzed using the maximum left overbank WSPRO tube velocity and the depth of flow at the bent. Bents 2 and 3 are located in the channel and were analyzed using 90 percent of the maximum WSPRO tube velocity and the maximum depth within the channel at the bridge. The maximum depth within the channel was used to account for possible changes in the thalweg during a flood. The bridge is skewed approximately 15 degrees to the channel. However, because the columns are spaced far apart, they function as if there were no skew.

The left overbank at the bridge was analyzed for contraction scour using Laursen's clear-water contraction scour equation (Richardson and others, 1993).

Chester Reservoir is located approximately 1,100 ft upstream of the Route SC 9 bridge. Therefore, sediment transport is likely to be minimal and it was decided that clear-water scour would best represent the contraction scour processes at the bridge; consequently, the potential contraction scour was determined using Laursen's clear-water contraction scour equation (Richardson and others, 1993). In addition, it was decided to neglect subtracting the pier widths and to use the higher flood plain D₅₀ to try to obtain more reasonable contraction scour results. However, the clear-water contraction scour results, 14.5 ft and 21.1 ft for the 100- and 500-year discharges, respectively, appear excessive and therefore, engineering judgement should be exercised when interpreting these results.

No abutment scour computations were made because the abutments are protected by riprap.

WSPRO OUTPUT

WSPRO V04209	FE:	DERAL HIGHW MODEL FO	AY ADMINIST R WATER-SU	RATION - U. RFACE PROF	S. GEOLOGICA	L SURVEY
	Sandy I Cheste: *** Ri	River at SC r County, S UN DATE & T	9 outh Caroli IME: 03-15-	fil na AW 95 15:25		1994
CR	OSS-SECTIO	N PROPERTIE	S: ISEQ =	5; SECID	= BRIDG; SRE	0.
W	SEL SA# 1	AREA 3	К ТО 25 54391	PW WETP 13 13	ALPH LEW	REW QCR
415	.48	512 515	54391 54416	71 76 85 89	1.01 62	7782 146 7167
VE	LOCITY DIST	TRIBUTION:	ISEQ = 5;	SECID = B	RIDG; SRD =	0.
	WSEL 415.88	LEW R	EW AREA .9 551.4	к 59414.	Q VEL 4400. 7.98	
X STA. A(I) V(I)		58.4	35.9	31.0	.1 103.2 27.7 7.93	26.0
X STA. A(I) V(I)	105.	9 108 24.4 9.02	.2 110 23.3 9.43	.3 112 22.4 9.81	.3 114.2 21.6 10.19	116.1 21.8 10.11
A(I)		21.6	21.7	21.4	.6 123.5 21.6 10.17	22.5
A(I)		22.7	24.9	26.5	.7 136.5 31.4 7.00	44.5

WSPRO OUTPUT -- Continued

WSPRO V04209			IGHWAY ADMI FOR WATE					VEY
	San Che	dy River a ster Count	4000900600 t SC 9 y, South Ca & TIME: 03	rolina	file: AWC	t. brido sandy.s Septem	ge) sc9 nber 1994	
CR			RTIES: ISE			APPR ;	SRD =	215.
₩	:	1 763	X 22682 72722 52803 148207	133	134			10355
417	.70	2739	148207	399	402 2.	96 15	56 555	23657
	WSEL 417.70	LEW 155.8	ON: ISEQ = REW A 555.2 273	REA 8.8 1482	к 07. 4	Q 400. 1	VEL 61	
A(I)		319.5	235.7 223.4 0.98	207	. 1	75.1	61.9	
X STA. A(I) V(I)	3	63.1 63.1 3.49	308.9 53.2 4.13	313.4 52 4.3	317.7 .7 18	32 52.5 4.19	2.0 52.5 4.19	326.3
A(I)		54.9	331.0 59.2 3.71	78	. 1	175.0	175.1	
	3	188.2	409.7	431.5	454.6	47	8.3 295.8 0.74	555.2

WSPRO OUTPUT -- Continued

	FI 4					EOLOGICAL SUI	
	Structure #124000900600 (180 ft. bridge) Sandy River at SC 9 file: sandy.sc9 Chester County, South Carolina AWC September 1994 *** RUN DATE & TIME: 03-15-95 15:25						
CRO	OSS-SECTIO	N PROPERT	IES: ISEQ	2 = 5;	SECID = BRII	OG; SRD =	0.
Ws	1 2	108 693	5163 88503	53 73	53	LEW REV	V QCR 876 12128 8
417	.98	803	93703	129	135 1.14	22 152	10647
	WSEL 418.26	LEW 21.8 1	REW AF 52.4 839	REA 9.5 993	к (306. 6600.		
A(I)		100.3	68.5	50	0.0 42.	96.7 8 39.8 1 8.30	3
		36.4	34.6	33	.9 31.	111.4 2 31.5 6 10.48	j
X STA. A(I) V(I)	113	.7 13 31.1 10.62	31.3 10.54	118.2 30 10.	120.4 0.8 31. 71 10.4	122.6 5 32.3 8 10.22	124.9
X STA. A(I) V(I)	124	.9 13 33.2 9.94	27.4 . 34.6 9.53	130.1 38 8.	133.4 3.8 43. 51 7.6	137.6 0 63.9 7 5.17	152.4

WSPRO OUTPUT --Continued

			R-SURFACE	PROFILE CON	LOGICAL SUR MPUTATIONS	VEY
	Structure #12 Sandy River a	4000900600		(180 ft. br:	idge)	
	sandy kiver a Chester Count	it SC 9	1	file: sandy	y.sc9	
,	*** RUN DATE	y, south ca	.101111d -15-05 15-	AWC Sepi	cember 1994	
	SECTION PROPE				; SRD =	215.
WSEL	SA# AREA 1 1092 2 692	K	TOPW WE	TP ALPH	LEW REW	
	1 1092	38022	150 1	51		16
	2 692	100950	54	55		
440.00	3 1921	81627	240 24 444 44	41		30
419.99	3705	220600	444 4	47 2.99	139 583	35
419	SEL LEW .99 139.0	583.3 370	5.5 220600	. 6600.	1.78	
X STA.	139.0	224.1	253.0	278.4	293.3	300.6
	414.4					
Λ(Τ)	0.80	1.12	1.23	2.07	4.02	
	300.6	307.4	312.4	317.2	322.0	326.8
X STA.		70.4			60.4	
X STA. A(I)	83.7	70.4	69.6	69.5	09.4	
X STA. A(I) V(I)	83.7 3.94	4.69	4.74	69.5 4.75	4.76	
A(I) V(I) X STA.	326.8	332.1	338.4	351.2	372.7	394.3
A(I) V(I) X STA. A(I)	326.8 72.1	332.1 78.3	338.4 136.5	351.2 225.9	372.7	394.3
A(I) V(I) X STA. A(I)	326.8	332.1 78.3	338.4 136.5	351.2 225.9	372.7	394.3
A(I) V(I) X STA. A(I) V(I)	326.8 72.1 4.58	332.1 78.3 4.21 415.8	338.4 136.5 2.42	351.2 225.9 1.46	372.7 227.1 1.45	394.3 583.3

WSPRO OUTPUT -- Continued

WSPRO V042094							GEOLOGICAL COMPUTATI		•
S C	tructure andy Rive hester Co *** RUN 1	er at S ounty,	C 9 South Ca	rolina	a	AWC S	bridge) andy.sc9 September	1994	
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR		Q VEL	WSEL
	*****	42 274	1197 121966			415.65 *****		4400 3.68	415.35
EXITB:XS -389	10 10	42 276	1210 132480	0.24 1.18	0.01 0.00		****** 0.31		415.42
EXIT :XS -179	210 210	42 275	1202 131547			415.90 0.01	******		415.66
FULV :FV	180 180	42 274	1196 130869	1.18	0.00	0.01		3.68	415.87
<< ·	<< <the a<="" td=""><td>BOVE RE</td><td>SULTS RE</td><td>FLECT</td><td>"NORMA</td><td>L" (UNCC</td><td>NSTRICTED</td><td>) FLOW></td><td>>>>></td></the>	BOVE RE	SULTS RE	FLECT	"NORMA	L" (UNCC	NSTRICTED) FLOW>	>>>>
APPR :AS 215	215 215 << <the af<="" td=""><td>171 540 SOVE RE:</td><td>2168 108811 SULTS RE</td><td></td><td>0.00</td><td>0.00</td><td>****** 0.25 ONSTRICTED</td><td>2.03</td><td>416.22</td></the>	171 540 SOVE RE:	2168 108811 SULTS RE		0.00	0.00	****** 0.25 ONSTRICTED	2.03	416.22
	<<< <res< td=""><td>SULTS R</td><td>EFLECTING</td><td>G THE</td><td>CONSTR</td><td>CTED FI</td><td>OW FOLLOW</td><td>>>>></td><td></td></res<>	SULTS R	EFLECTING	G THE	CONSTR	CTED FI	OW FOLLOW	>>>>	
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
BRIDG:BR 0	180 180	62 146	515 54429	1.47 1.30	0.49 0.56	416.95 0.00	412.83 0.70	4400 8.55	415.48
TYPE P	PCD FLOW	Ç 0.878	P/A 0.051			EN XLA	AB XRAB		
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K		HF HO	EGL ERR		Q VEL	WSEL
APPR :AS 215	180 193	156 555			0.46		412.03 0.19		417.70
	M(K) 0.440	K(82905	2 XLKQ		Q 0	TEL 7.54			
		<<<<]	END OF BI	RIDGE	COMPUT	'ATIONS>>	·>>>		

WSPRO OUTPUT -- Continued

WSPRO V042094	FEDE			CNISTR ER-SURI			GEOLOGICAL COMPUTATIO		Ž.
\$	Sandy Ri Chester	re #12400 ver at Sc County, DATE &	C 9 South Ca	arolina	a	(180 ft. file: sa AWC ;		1994 ⁻	
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH		EGL ERR		Q VEL	WSEL
EXITA:XS -399	***** ****	34 324	1895 182886			418.30 *****		6600 3.48	417.95
EXITB:XS -389	10 10	30 325	1937 233483	0.20 1.11			****** 0.25	6600 3.41	418.10
EXIT :XS -179	210 210	33 324	1907 228539	0.21 1.12			****** 0.25	6600 3.46	418.27
FULV :FV 0	180 180 <=<=	35 324 ABOVE RES	224687	0.21 1.12 FLECT	0.00	0.00	****** 0.26 ONSTRICTED)	3.50	
APPR :AS 215	215 215	146 565	3138 177415	0.20 2.97	0.23	418.88	***** 0.23	6600 2.10	418.68
<<		•					ONSTRICTED)		>>>>
XSID:CODE	SRDL	LEW	AREA	VHD			OW FOLLOW>		
SRD	FLEN	REW	K	ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
BRIDG:BR 0	180 180	22 152	803 93709	1.47 1.40	0.37 0.60	419.45 0.00	414.86 0.69	6600 8.22	417.98
	PCD FLOT		P/A 0.054			EN XLA	B XRAB		
===140 AT S	ECID "A	PPR ": E						LY. 4	29.5
XSID:CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
APPR :AS 215	180 193	139 583	3707 220721	0.15 2.99	0.41 0.28	420.14	412.96 0.19	6600 1.78	419.99
M(G) 0.686	M(K) 0.374	KQ 137904.	XLKQ 236.	XRK 365	Q 0 . 41	TEL 9.83			•
		<<< <e< td=""><td>ND OF B</td><td>RIDGE</td><td>COMPUT</td><td>ATIONS>></td><td>>>></td><td></td><td></td></e<>	ND OF B	RIDGE	COMPUT	ATIONS>>	>>>		

PIER SCOUR COMPUTATIONS

FOR

Sandy River	at Str.	12400090	0600 in Chester	Cty., SC	
	Q100	AWC	3-16-1995		١١
=======================================	=======	======			╡┃

	HYDRAULIC VARIABLE	S USED IN CSU EQUATION	
PIER NUMBER	4 3	2	
PIER STATION (FT)	40 90	140	
LOCATION OF PIER	lfp mcl	mcr	
Y1: DEPTH (FT) V1: VEL. (FPS)	0.0 11.8 0.0 9.3	11.8	[]
a: PIER WIDTH (FT)	0.0 9.3 2.5 2.5	9.3 2.5	П
L: PIER LENGTH (FT)	7.2 7.2	7.2	
PIER SHAPE	1 1	1	
ATTACK ANGLE	0 0	0	П
K1 (SHAPE COEF.)	1.10 1.10	1.10	
K2 (ANGLE COEF.) FROUDE NO.	1.00 1.00 0.00 0.48	1.00 0.48	
TROODE NO.	0.00 0.40	0.40	·
	COMPUTED SCOUR D	PTHS USING CSU EQUATION	
SCOUR DEPTH (FT)	0.00 6.87	6.87	
MAX SCOUR DEPTH (FT)	0.00 7.56	7.56	
			C
"MAX SCOUR DEPTH"	includes an additio	nal 10 percent of the	
computed CSU scour d	epth as recommended	in HEC 18	
-	-		
	CONTRA	CTION SCOUR COMPUTATIONS	
	Sandy River at 9	FOR tr. 124000900600 in Chester	Ctv SC
		00 AWC 3-16-1995	Cty., 50
=======================================		=======================================	
			(/
	I .	AIN CHANNEL IN BRIDGE OPENII	NG L
	CLEAR-V	ATER CONTRACTION SCOUR COMP	JTATIONS
DISCUNDED IN COMM	RACTED SECTION (CFS	4400	
WIDTH OF CONTRACT) = 4400. = 73.0	
MEDIAN GRAIN SIZE		= 0.0019	
	•		
	CONTRACTED SECTION		
AVERAGE FLOOD PLA		= 11.3	
DEPTH OF CONTRACT	LON BCOOK (FT)	= 14.5	
			П

PIER SCOUR COMPUTATIONS

FOR

Sandy River at Str. 124000900600 in Chester Cty., SC

		sandy kiver	Q500	AWC	3-16-1995	sc
[]						
		HYDRAULIC	VARIABLE	S USED IN	CSU EQUATION	
[]	PIER NUMBER	4	3	2		
_	PIER STATION (FT)	40	90	140		
	LOCATION OF PIER	lfp	mcl	mcr		
	Y1: DEPTH (FT)	2.2	14.2	14.2		
	V1: VEL. (FPS)		9.6			
	a: PIER WIDTH (FT)	2.5	2.5	2.5		
	L: PIER LENGTH (FT)		7.2	7.2		
٠.,	PIER SHAPE	1	1	1		
	ATTACK ANGLE	0	0	0		
	K1 (SHAPE COEF.)	1.10	1.10	1.10		
li	K2 (ANGLE COEF.)	1.00	1.00	1.00		
	FROUDE NO.	0.57	0.45	0.45		
[j		COMPUTED	SCOUR DE	PTHS USI	NG CSU EQUATION	
	SCOUR DEPTH (FT)					
	MAX SCOUR DEPTH (FT)	4.55	7.89	7.89		
L.J						
L	WAY GOID DEDUCE					
	"MAX SCOUR DEPTH"	includes ar	n additio	nal 10 p	percent of the	

"MAX SCOUR DEPTH" includes an additional 10 percent of the computed CSU scour depth as recommended in HEC 18

CONTRACTION SCOUR COMPUTATIONS

FOR

Sandy River at Str. 124000900600 in Chester Cty., SC

Q500 AWC 3-16-1995

LEFT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	364.
WIDTH OF CONTRACTED SECTION (FT)	=	50.0
MEDIAN GRAIN SIZE (FT)	=	0.0019
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	4.2
AVERAGE FLOOD PLAIN DEPTH (FT)	=	2.3
DEPTH OF CONTRACTION SCOUR (FT)	=	1.9

MAIN CHANNEL IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	6236.
WIDTH OF CONTRACTED SECTION (FT)	=	73.0
MEDIAN GRAIN SIZE (FT)	=	0.0019
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	34.8
AVERAGE FLOOD PLAIN DEPTH (FT)	=	13.7
DEPTH OF CONTRACTION SCOUR (FT)	=	21.1

		·	
•			

	•		
			П
			П
			П
•			

United States Department of the Interior

U.S. GEOLOGICAL SURVEY

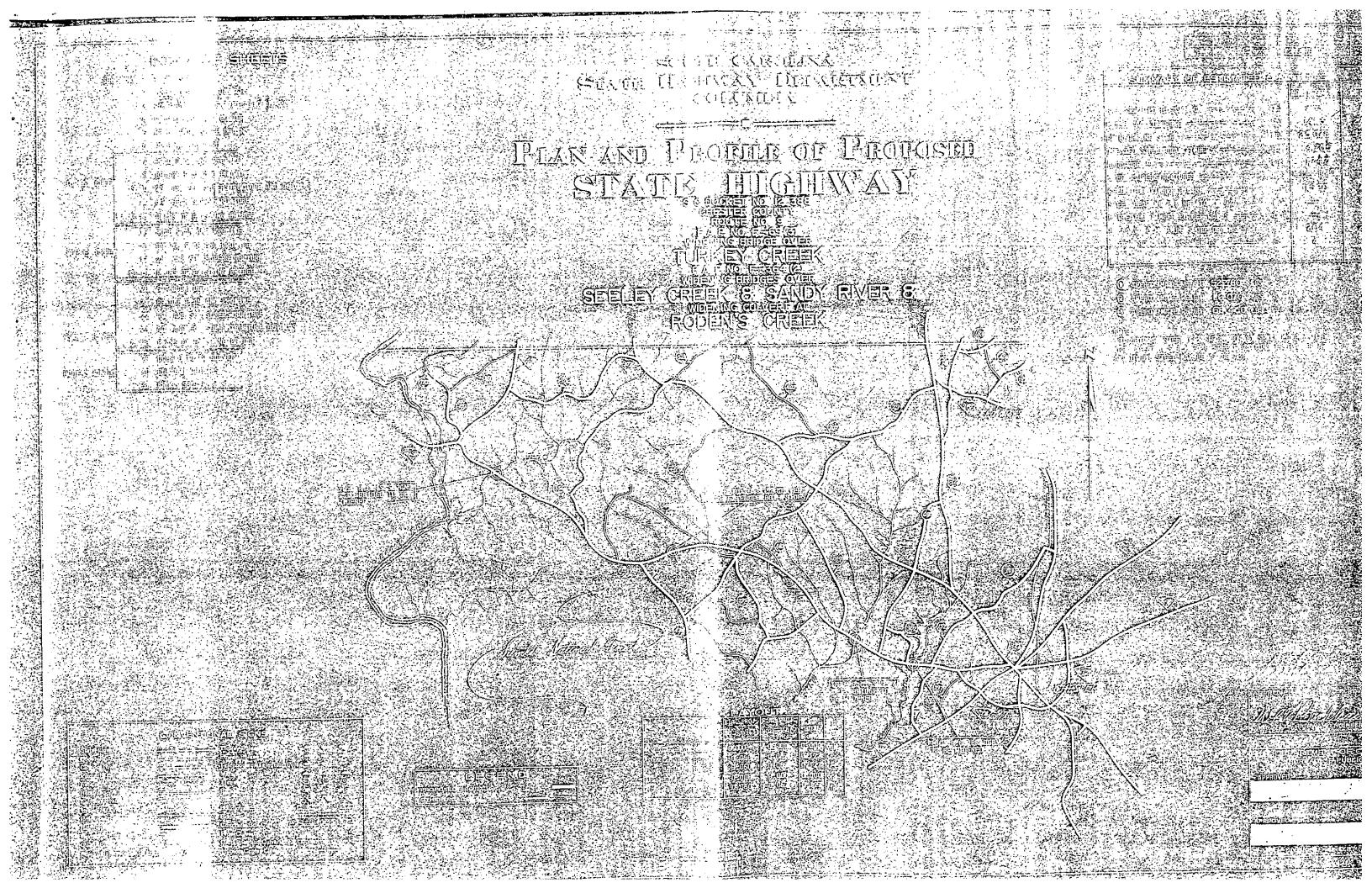
Water Resources Division Stephenson Center, Suite 129 720 Gracern Road Columbia, SC 29210-7651

March 21, 1995

William H. Hulbert, P.E. Hydraulic Engineer South Carolina Department of Transportation 955 Park Street Columbia, South Carolina 29202

Dear Mr. Hulbert:

We are pleased to transmit to you another report of the Level II Bridge Scour Program titled, "Level II bridge scour analysis for structure 124000900600 on Route SC 9, crossing the Sandy River in Chester County, South Carolina," by Andy W. Caldwell and J. Mike Sullivan. The technical aspects of the report have been reviewed by the South Carolina District Surface-Water Specialist and the editorial aspects of the report have been reviewed and approved by the South Carolina District Hydraulics Section Chief.


If you have any questions concerning this report please contact me (750-6101) or J. Mike Sullivan (750-6165) and we will be glad to assist you.

Sincerely,

Andy W. Caldwell Civil Engineer

Enclosure

5.	÷	- 2

•

.

				e () ä
	, v , s			
			•	
	m			

PILE RECORD ON 100CKET NO. 12.388 SANDY RIVER BRIDGE

FED. ROAD STATE COUNTY DOCKET ROUTE SHEET 7 NO. 3 S.C. Chester 12.388 9 4/

PILE RECORD BOOK NO. 12 ..

																		4110			I V E	<u>K</u>	BRID	IGE					·					<u> </u>	J. C. Che	s/er /2	388 9	41
 										<u> </u>					WEIGH	T OF	НАММ	ER	3,860_	.bs		Ŧ	YPE_ <i>_GR</i>	AVII	Υ						,,,							
DATE	B ENT NO.	FOOTING P	ILE NO. AT	DIAM. F BUTT.	DIAM. AT TIP	ORIG.	BUILD-UF OR SPLIC	TOTAL E LENGTH	LENGT C. O.	H NET	ELEV.	ELEV. PILE TIP	ELEV. ORIGINATION OF FOOTING	PEN IN GROUND OR BELOW FOOTING	EN. PER BLOW	FALL OF HAMMER	BEARING VALUE	PAY LENGTH	C.O.@ C.	0.@ 5 %	DATE	ENT NO.	FOOTING PILE	DIAN AT BU	A. DIAM.	ORIG.	BUILD-UF OR SPLIC	TOTAL E LENGTH	LENGTH C. O.	NET LENGTH	ELEV. EL	EV. GE TTP OR	LEV. ORIG. GROUND R BOTTOM F FOOTING	PEN. IN GROUND OR BELOW FOOTING	PEN, PER BLOW	FALL OF HAMMER	BEARING VALUE L	PAY G.C ENGTH 40
																					5-9					35.00			1/		i.		425.70					
			+		·· .			 	 						-					-	5-9	14	2	*		35.00	1	35.00	6.07	128.93	127.27 39	8.34	425.70	27.36	.5834		36.58	30.93
				-						-	-	-								IL		21/	1.			35.00		35.00	4.16	30.84	426.37 39	5.53	414,94	19.41	. 4587		39.7/	30.84
																				—	5-9 5-9	2 V 2V	3		-	35.00			!	1	426.37 39 426.37 39	ــالــــــــــــــــــــــــــــــــــ	f	18.07	.708:		33.90 36.58	30.90
															•						5-8	2 V	4			35.00			i		426.37 394 2 Av. = 37			16.61				
				•					<u> </u>	-	 				· - · -					_	5-8		/	<i>-</i>		35.00		35.00	4.89	30.11	426.37 39	5, 1Z 6, 261	408.54	12.28	.500			
													<u> </u>	 								31/	2			35.00		<u> </u>		L, , <u>}</u>	426.37 398	- 1/2	409.14	1	[27.79
								-		-												3/	Z			35.00	i	35.00 35.00		,	426.37 3.9 426.37 3.9		411.64	14.56			35.63	29.29
																					5-8	41	/1	-		35.00	1	35.00	9.642	25.3%	1 Av. = 397 426.37 40	1.014	417.54	16.53		-		- गह.चड
									-	-										_	5-9		2			35.00		1 (1 1	23.15	426.37 40	3.22	4/7.54	14.32	.792		. • 7	
																				_][5-9 5-8	. /	3	/		35.00	1	1	1	l 1.	426,37 .40		416.54				39.7/-/	
										 											5-9					35.00		35.00	10.86	24.14	426.37 39 • Av.= 40 427.27 40	9.66 1.15 3.13i	416.54 425.10	22.57	. 667:		34.73	z 100,84] - 2
																					5-9	51	2.			35.004		l i	1/ 1	24.98	. 1	2.36	425.70	- 1		· ·	37.55	24.91
																				=											71V 1 4-0	2, 14						22.04
			1				<u> </u>															+																
																				_ -																		
																								-								=						
																				╬		+			-	, "												
																										·										. ;		
			+																						1													
						-														1																-		
	_								·																						_		-					
								-												#																		
																				$\exists \vdash$												_ _						
																						_																
																					TOTA	IL T	OTAL					560.00	111.49 4 111.49 4	418.51			<u>-</u>					50.51
				\Box															_	- -	•			OTES	CONCER	NING AN	Y บทบรบ		NDATION	COND	ITIONS				NOTES:			50.51
												= =											2	- 4	Que to a	an engi	necring	error	REMARKS this	pile i	was cut	off, O	2.90		ALLOW.	ANCE FOR	SHOULD H	G STEEL
	_		+	_																		1		- 7	cile hea	d to	proper	eleya	tion.	ias sj This ath a	amount	Was V the	0.90 bring deduct e cemain the pay	ed	PILES A		OTHER AL	UTHORIZE
			_						· ·																ength t	or the	Bove.	A 2'a)	Howarce	was	made	in t	the pay			ERING PI	LES: BENT OR F	OOTING 7
				+	_																	+													BE DRA	AWN ON T	THIS SHEE D, ALSO F	T AND P
																				1															PENE	TO BE	PER BLOW	v: (1)F
TOTAL	_										•				-:.::: -					1		+-													GIVE TI	HIS INFO	RMATION IN	N DECIMA
						 														I)——																	4 / DOCKE	

		с. •	+ h- ,2