U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

LEVEL II BRIDGE SCOUR ANALYSIS FOR STRUCTURE 124007200700 ON ROUTE SC 72, CROSSING ROCKY CREEK IN CHESTER COUNTY, SOUTH CAROLINA

By Noel M. Hurley, Jr. and Stephen T. Benedict

Prepared in cooperation with the SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

Columbia, South Carolina 1994

UNIT ABBREVIATIONS

cubic foot per second ft³/s
foot per second ft/s
foot ft
mile mi
millimeter mm
square foot ft²
square mile mi²

OTHER ABBREVIATIONS

 $\begin{array}{ccc} & & & & & & & & & & \\ & upstream & & & & & & & \\ & & flood\ plain & & & f/p & \\ & median\ diameter\ of\ bed\ material & & D_{50} & \\ & South\ Carolina\ Department\ of\ Transportation & SCDOT & \\ \end{array}$

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical

Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order
level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Level II bridge scour analysis for structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

by Noel M. Hurley, Jr. and Stephen T. Benedict

This report provides the results of the detailed Level II analysis of scour potential at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina (figure 1 in pocket; figures 5-8). The site is located in the Piedmont physiographic province near the town of Chester in the central part of Chester County . The drainage area for the site is $8.0~{\rm mi}^2$, and is a predominantly rural drainage basin with little development in recent years. In the vicinity of the study site, the flood plain is covered by moderate to dense woods consisting of small to medium hardwoods and occasional pines and moderate to thick undergrowth.

In the study area, Rocky Creek has a meandering channel with a slope of approximately 0.0039 ft/ft (20.6 ft/mi), an average channel top width of 32 ft and an average channel depth of 7.9 ft. The predominant channel bed materials are sand and gravel (D_{50} is 1.3 mm) and the channel banks consist of a silty clayey sand (D_{50} is 0.50 mm). In general, the banks have sparse to moderate woody vegetative cover and were noted to be relatively unstable at the time of the Level I and Level II site visits, July 18, 1990 and February 11, 1992, respectively.

The Route SC 72 crossing of Rocky Creek is a 100-ft long, two-lane bridge consisting of four 25-ft concrete spans, supported by a combination of two 2.1 ft square concrete piers and, where the bridge has been widened, by two 0.9 ft steel H-piles. Both abutments are the spillthrough type and are protected by riprap. Some riprap has slumped off of both abutments. This appears to be caused by a combination of high flow and human activity. In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream. Additional details describing conditions at the site are included in the Scour Report Summary.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 5 and graphs of the scour depths are shown in figures 2 and 3.

Footing and pile penetration depths were obtained from SCDOT bridge plans, file number 12.344. At the direction of the SCDOT (R. Williamson, oral commun. 6-93), the proposed construction elevations at the base of the pier footings is shown instead of the pile tip elevations in tables 1 and 2 and on figures 2 and 3. The maximum scour occurs at bent 3. The plans noted the base of the footings to be located at elevation 74.6 ft (USGS datum). The base of the footing at bent 3 is undermined by 3.5 and 5.5 ft by the scour caused by the 100- and 500-year discharges, respectively. Additionally, the footings of bents 2 and 4 are undermined by 0.1 and 0.2 ft, respectively, by the scour caused by the 500-year discharge.

The original structure was built in 1928 and widened in 1956. The widened parts of the structure are supported by one 0.9 ft H pile U/S and D/S of the two interior 2.1 ft square concrete piers, respectively. The maximum pile tip elevations for the widened parts of the bridge are 70.5, 67.7, and 69.9 ft (USGS datum) for bents 2, 3, and 4, respectively. The scour caused by the 100-year discharge will result in remaining pile penetration depths of 6.0, 3.4, and 6.9 ft for bents 2, 3, and 4, respectively, and the scour caused by the 500-year discharge will result in remaining pile penetration depths of 4.0, 1.4, and 4.5 ft for bents 2, 3, and 4, respectively.

The 1928 SCDOT road plans show subsurface rock at an approximate elevation of 78.8 ft (USGS) that could reduce the amount of scour at the site. However, when the structure was widened in 1956, piles were driven 8-9 ft below the approximate rock elevation. For more information, see the plans in the pocket at the back of the report.

Table 1. --Remaining pile/footing penetration at piers/bents for the 100-year discharge at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

Remaining ⁵ pile/footing penetration (feet)		2.2	-3.5	1.9
Elevation of scour, USGS datum (feet)		76.8	71.1	76.5
Total ⁴ scour depth (feet)	r second	6.9	8.5	8.5
Ground elevation at pier/bent, USGS datum (feet)	100-year discharge is 2,740 cubic feet per second	83.7	79.6	85.0
Pile tip/ footing elevation, USGS datum (feet)	discharge is 2,7	74.6	74.6	74.6
Pile tip/ ³ footing elevation, SCDOT datum (feet)	100-year	122.8	122.8	122.8
Station from ² left end of bridge (feet)		25	50	75
Pier/bent ¹ number	1	4	en	2

¹ Pier/bent number corresponds to South Carolina Department of Transportation bridge plans, file number 12.344.

² Stations are determined from left to right looking downstream.

³Pile tip/footing elevations obtained from SCDOT bridge plans. The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier/bent scour depths.

 $^{^5\,\}mathrm{A}$ negative number signifies undermining of pile tip/footing.

Note: The SCDOT bridge plan botings show subsurface rock that could reduce the scour depths presented in this table. For more information, see the bridge plans in the pocket at the back of the report.

Table 2. --Remaining pile/footing penetration at piers/bents for the 500-year discharge at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Pile tip/ ³ footing elevation, SCDOT datum (feet)	Pile tip/ footing elevation, USGS datum (feet)	Ground elevation at pier/bent, USGS datum (feet)	Total ⁴ scour depth (feet)	Elevation of scour, USGS datum (feet)	Remaining ⁵ pile/footing penetration (feet)
		500-year	discharge is 4,1	500-year discharge is 4,150 cubic feet per second	second.		
4	25	122.8	74.6	83.7	9.3	74.4	-0.2
3	20	122.8	74.6	9.6	10.5	69.1	-5.5
2	75	122.8	74.6	85.0	10.5	74.5	-0.1

¹ Pier/bent number corresponds to South Carolina Department of Transportation bridge plans, file number 12.344.

² Stations are determined from left to right looking downstream.

³Pile tip/footing elevations obtained from SCDOT bridge plans. The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier/bent scour depths.

 $^{^5}$ A negative number signifies undermining of pile tip/footing.

Note: The SCDOT bridge plan botings show subsurface rock that could reduce the scour depths presented in this table. For more information, see the bridge plans in the pocket at the back of the report.

Table 3. --Cumulative scour depths at piers/bents for the 100-year discharge at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)	
100-year discharge is 2,740 cubic feet per second					
4	25	1.8	5.1	6.9	
3	50	0.4	8.1	8.5	
2	75	0.4	8.1	8.5	

Table 4. --Cumulative scour depths at piers/bents for the 500-year discharge at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
	500-year dischar	ge is 4,150 cubi	c feet per second	
4	25	3.8	5.5	9.3
3	50	1.3	9.2	10.5
2	75	1.3	9.2	10.5

¹ Pier/bent number corresponds to South Carolina Department of Transportation bridge plans.

Note: The SCDOT bridge plan botings show subsurface rock that could reduce the scour depths presented in this table. For more information, see the bridge plans in the pocket at the back of the report.

Note: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

Table 5. -- Abutment scour depths for the 100- and 500-year discharges at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina

Recurrence interval for discharge	Discharge (cubic feet per second)	Depth of scour ^{1, 2} at left abutment (feet)	Depth of scour ^{1, 2} at right abutment (feet)
100-year	2,740	5.8	5.3
500-year	4,150	8.1	6.6

¹ Abutment scour depths were calculated using the Froehlich (1989) live-bed abutment scour equation, assuming no abutment protection.

² The words "right" and "left" refer to directions that would be reported by an observer facing downstream.

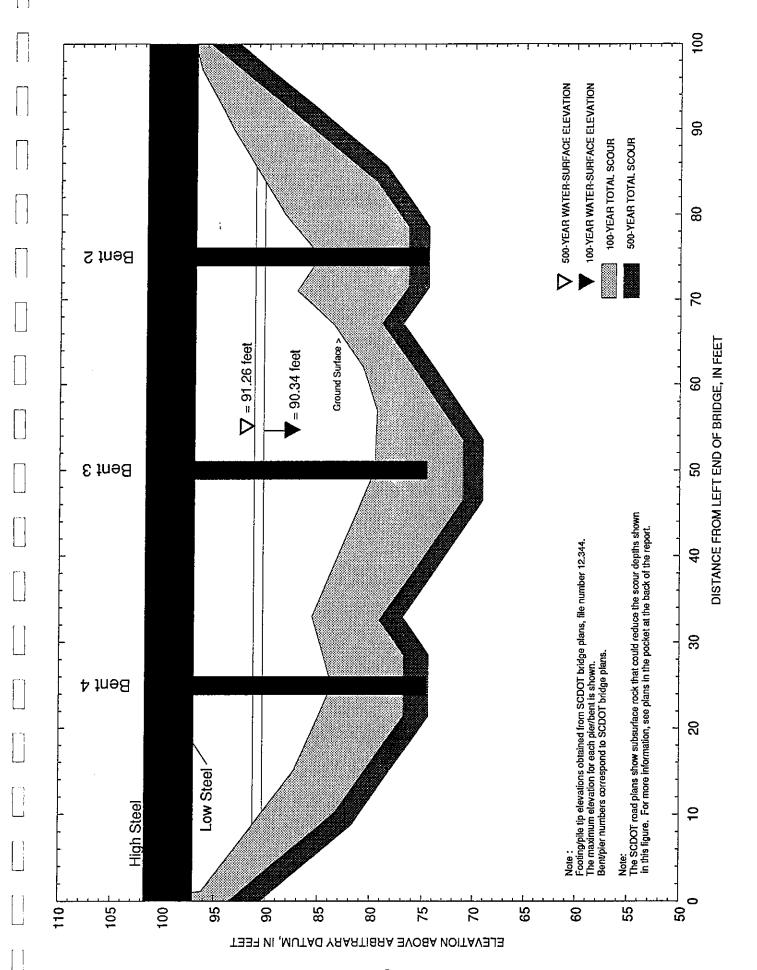


Figure 2.--Total scour depths for the 100- and 500-year discharges at the upstream face of structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina.

		[.]
		لـا

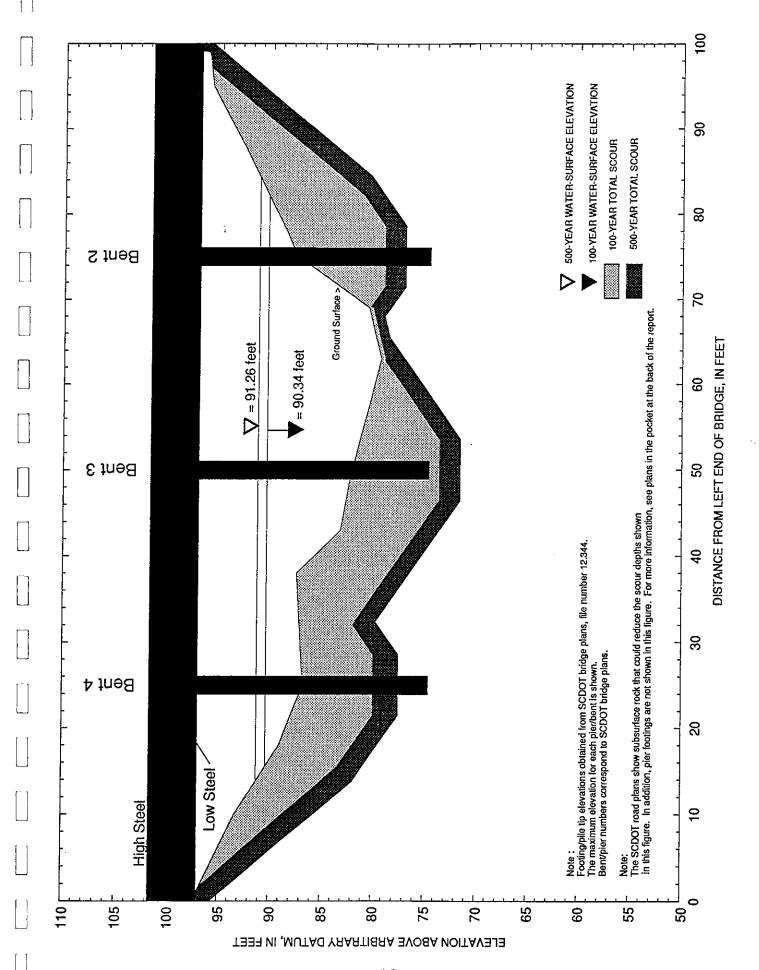


Figure 3.--Total scour depths for the 100- and 500-year discharges at the downstream face of structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina.

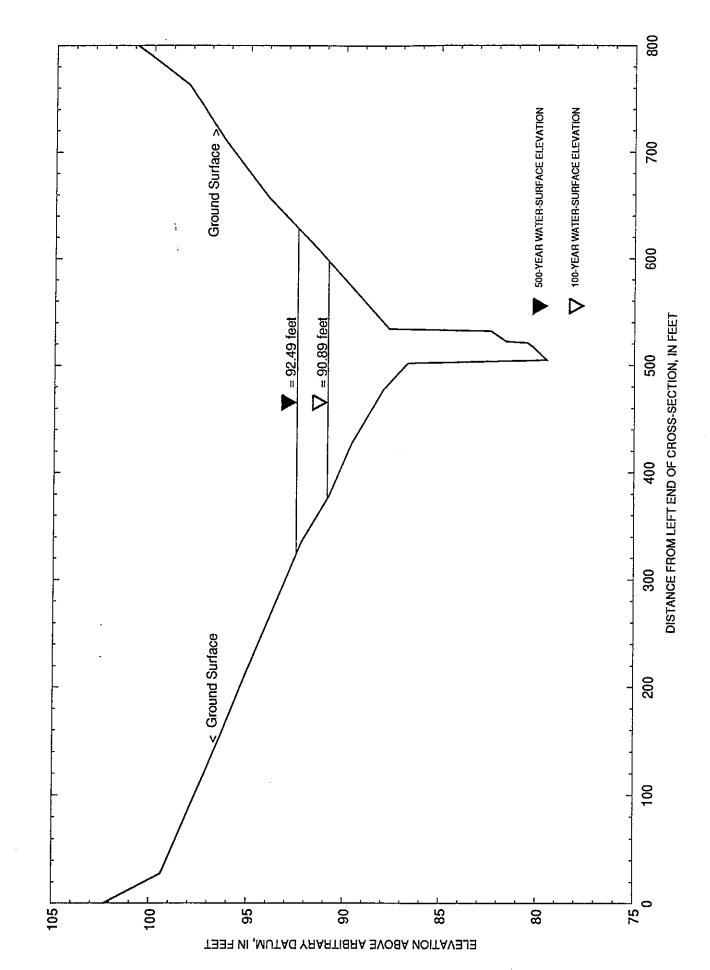


Figure 4.--Approach cross section at structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina.

Figure 5.--Structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina as viewed from upstream (February 11, 1992).

Figure 6.--Upstream channel as viewed from the approach cross section of structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina (February 11, 1992).

·	
	\bigcap

Figure 7.--Downstream channel as viewed from the exit cross section of structure 124007200700 on Route SC 72, crossing Rocky Creek in Chester County, South Carolina (February 11, 1992).

Figure 8.--Erosion of right bank at structure 124007200700 on Route SC 72 crossing Rocky Creek in Chester County, South Carolina (July 18, 1990).

	1
	L
	I
	İ
	1
]
\]
]
]
]
]
	j

SELECTED REFERENCES

- Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p.
- Arneson, L. A., Shearman, J. O., Jones, J. S., 1992, Evaluating scour at bridges using WSPRO: Transportation Research Board Draft Paper, 40 p.
- Bohman, L. R., 1990, Determination of flood hydrographs for streams in South Carolina: Volume
 1. Simulation of flood hydrographs for rural watersheds in South Carolina: U.S.
 Geological Survey Water-Resources Investigations Report 89-4087, 53 p.
- Bohman, L. R., 1990, Determination of flood hydrographs for streams in South Carolina: Volume 2. Estimation of peak-discharge frequency, runoff volumes, and flood hydrographs for urban watersheds: U.S. Geological Survey Water-Resources Investigations Report 92-4040, 79 p.
- Froehlich, D. C., 1989, Local scour at bridge abutments *in* Ports, M. A., ed., Hydraulic Engineering—Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18.
- Guimaraes, W. B., and Bohman, L. R., 1991, Techniques for estimating magnitude and frequency of floods in South Carolina, 1988: U.S. Geological Survey Water-Resources Investigation Report, 91-4157, 174 p.
- Gunter, H.E., Mason, R.R., and Stamey, T.C., 1987, Magnitude and frequency of floods in rural and urban basins of North Carolina: U.S. Geological Survey Water-Resources Investigations Report 87-4096, 54p.
- Laursen, E. M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53.
- Laursen, E. M., 1963, An analysis of relief bridge scour: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 89, no. HY3, p. 93-118.
- Richardson, E. V., Harrison, L. J., Richardson, J. R., and Davis, S. R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p.
- Richardson, E. V., Simons, D. B., and Julien, P. Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016.
- Richardson, E. V., Simons, D. B., Karaki, S., Mahmood, K., and Stevens, M. A., 1975, Highways in the river environment: hydraulic and environmental design considerations: Federal Highway Administration.

SELECTED REFERENCES- continued

Shearman, J. O., 1990, User's manual for WSPRO—a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p.

Shearman, J. O., Kirby, W. H., Schneider, V. R., and Flippo, H. N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.

SCOUR REPORT SUMMARY

ucture Number _	124007200700	_ Stream	Rocky Cr	eek	
unty Chester	<u>r</u>	Road	SC 72	District	4
	<u>Descripti</u>	on of Brid	<u>lge</u>		
Bridge length _	100 ft Bridge widt	h30	ft Max	span length _	25 ft
Alignment of br	idge to road (on curve or s	traight)	Straight		
Abutment type	Spillthrough	Embankn	ient type	Sloping	
Riprap on abutn	ient? Yes	Date of insp	pection 7-18	3-1990	
Description of 1	riprap Six to 16-inch roc	ks on both a	butments. Th	ne riprap has s	slumped.
The right abutn	nent is eroding and people	e have been	moving the r	iprap in orde	r to sleep
on the left abutr	nent.				
Is bridge located	d to flood plain according d on a bend in channel? _ nd in the channel impacts	Yes If so	, describe (mi	ld, moderate,	
Debris accumul	ation on bridge at time of Date of inspection				of chann
-		blocked ho		blocked	vertically
$Level\ I$	7-18-1990	0		0	<u> </u>
Level II	2-11-1992				
="	or debris High: Large and of the bridge that can be t				he flood
	tures near or at the bridg	-			
bridge and const	ricts high flows.	···			

<u>Description of Flood Plain</u>

General top	ography	Roling	hills with a relativ	ely narrow flood plain	
Flood-plair	n conditio	ons at bri	dge site: downstre	eam (D/S), upstream (U	(/S)
Date of ins	pection	2-11-199	2		
D/S left:	Small to	o mediun	n-sized hardwood	s with light to moderat	e underbrush
D/S right:	Small to	medium	-sized hardwoods	with moderate to thic	k underbrush
U/S left:	Shall to medium-sized hardwoods with moderate to thick underbrush				
U/S right:	Small h	ardwood	s with thick under	brush	
		Ī	Description of (<u>Channel</u>	
Average top	width	32	ft	Average depth	
			Coarse sand	Bank material	Silt/clay
Stream typ	e (straigh	t, meand	ering, braided, sw	ampy, channelized) <u>M</u>	leandering
			· · · · · · · · · · · · · · · · · · ·		
Vegetative (cover on (channel b	anks near bridge:	Date of inspection	2-11-1992
D/S left:	Some h	erbace <u>ou</u>	s cover and sparse	e woody vegetative cov	ver
D/S right:	Some la	irge trees	with roots expose	ed by fluvial erosion	
U/S left:	Few sm	all to me	dium hardwoods	on bank	·····
U/S right:	Some n	edium h	ardwoods with ro	ots exposed by fluvial	erosion
Do banks a	ppear sta	ble? N	If not, de	scribe location and typ	ve of instability and
date of obs	ervation.	Heavy	fluvial erosion oc	ccurring along both bar	nks U/S and D/S
				ow impact points on the	
bridge and	l on the le	eft bank a	pproximately 90 f	t D/S of the bridge. T	nese conditions
were obser	ved on Ju	ıly 18, 19	90 and February 1	1, 1992.	
Describe an	y obstruc	ctions in	channel and date o	of observation. An	old road
embankme	ent with v	vertical co	oncrete abutments	is located 130 feet U/S	of the bridge.
Additional	lly, there a	are many	fallen trees in the	channel and on the flo	od plains.

Hydrology

Drainage area 8.0 mi ²	
Percentage of drainage area in physiographic	: provinces:
Physiographic province	Percent of drainage area
Piedmont (high flow)	100
i	
Is drainage area considered rural or urban?	Rural Describe any significant
urbanization and potential for development.	Moderate potential for basin
development; the site is located just east of t	
Is there a USGS gage on the stream of interest	t? No_
USGS gage number	
	:2
Gage drainage area	> 7
Is there a lake/pond that will significantly aff	fect hydrology/hydraulics?No
If so, describe	
· · · · · · · · · · · · · · · · · · ·	
•	
Calculated	Discharges
Q100 $2,740$ ft^3/s	$Q500 \ 4,150 \ ft^3/s$
Mothod used to determine discharges The site	e is located in the high-flow region of the north,
•	e, the methods described by C.L. Sanders were
used (w. cmm., 12-93). The peak flows were	estimated using equations published in WRIR
87-4096, "Magnitude and frequency of floods	s in rural and urban basins of North Carolina",
by Gunter, Mason, and Stamey and by metho	ods described in USGS Bulletin 17B.

Datum for WSPR	O analysis (USGS su	arvey, sea level, SCDOT p	lans) USGS survey
•	en USGS survey and		48.18 ft to the USGS
datum to obtain	the SCDOT plan's d	atum. (file number 12.34	4)
Description of re	eference marks used t	o determine USGS datun	. RM 1: Chiseled
•	=		niseled square on D/S left
bridge curb, elev	vation: 100.00 ft (ass	umed).	
		<u> </u>	
	Cross-Sections U	Jsed in WSPRO Analy	sis
•	Section		
	Reference	**How cross-	
oss-section ID	Distance	section was	Comments
	•		Comments
	Distance (SRD)	section was	Comments Shifted to SRD
ID	Distance (SRD) in feet	section was developed	
ID T2	Distance (SRD) in feet 	section was developed	Shifted to SRD
T2 T1	Distance (SRD) in feet -1000	section was developed 2 2	Shifted to SRD Shifted to SRD
ID T2 T1 EXIT	Distance (SRD) in feet -1000 -500	section was developed 2 2 2	Shifted to SRD Shifted to SRD Exit section Full valley section
T2 T1 EXIT FULV	Distance (SRD) in feet -1000 -500 -100	section was developed 2 2 2 2	Shifted to SRD Shifted to SRD Exit section
T2 T1 EXIT FULV BRDGD	Distance (SRD) in feet -1000 -500 -100 0	section was developed 2 2 2 2 1	Shifted to SRD Shifted to SRD Exit section Full valley section D/S bridge section
T2 T1 EXIT FULV BRDGD	Distance (SRD) in feet -1000 -500 -100 0	section was developed 2 2 2 2 1	Shifted to SRD Shifted to SRD Exit section Full valley section D/S bridge section
T2 T1 EXIT FULV BRDGD	Distance (SRD) in feet -1000 -500 -100 0	section was developed 2 2 2 2 1	Shifted to SRD Shifted to SRD Exit section Full valley section D/S bridge section
T2 T1 EXIT FULV BRDGD	Distance (SRD) in feet -1000 -500 -100 0	section was developed 2 2 2 2 1	Shifted to SRD Shifted to SRD Exit section Full valley section D/S bridge section
T2 T1 EXIT FULV BRDGD	Distance (SRD) in feet -1000 -500 -100 0	section was developed 2 2 2 2 1	Shifted to SRD Shifted to SRD Exit section Full valley section D/S bridge section

For location of cross-sections see topographic map included with report (figure 1).
 For more detail on how cross-sections were developed see WSPRO input file.

 ** Cross-section development: 1) survey at SRD 2) shift of survey data to SRD 3) modification of survey data based on topographic map 4) synthesized by combining channel survey data and topographic contours 5) other

Description of data and assumptions used in developing WSPRO model.

The survey data collected at the site includes an Exit cross section 196 ft D/S of the D/S bridge face, a cross section of an old road embankment 130 ft U/S of the U/S bridge face, and a natural approach cross-section just U/S of the old embankment. Cross sections also were surveyed at the U/S and D/S faces of the bridge and pier/bridge geometry was measured. The cross section elevations are relative to USGS Reference Marks 1 and 2.

Cross sections T2, T1, EXIT and FULV (full valley) were developed by locating the D/S surveyed cross section at the appropriate Section Reference Distance (SRD) and adjusting the cross section elevations by the channel slope (0.0039 ft/ft). The APP (approach) cross-section was developed by locating the cross section survey just U/S of the old road embankment at the appropriate SRD and adjusting the cross section elevations by the channel slope. The old road embankment is located beyond one-bridge width U/S of the bridge and was assumed to have little influence on the bridge hydraulics. Therefore, the old embankment was not included in the final WSPRO Model. To verify this assumption, a separate WSPRO Model was run with the old embankment cross section located at one-bridge width upstream and the results of these two scenarios were compared. The difference in the water-surface elevations at the bridge and approach cross sections was 0.2 ft or less, verifying the assumption that the old embankment had little influence. A skew angle of 15 degrees was determined during the Level II site visits and was confirmed by the USGS topographic map of the area.

The starting water-surface elevation used by the WSPRO Model was determined by the model using slope-conveyance. Tests for water-surface convergence indicated that using slope conveyance to estimate the starting water-surface elevation for cross-section T2 was valid.

Bridge Hydraulics

Average embankment elevation 99.9 ft

Average low steel elevation 97.0 ft

100-year discharge 2,740 ft³/s

Water-surface elevation at D/S bridge face 90.34 ft

Area of flow at D/S bridge face 364 ft²

Average velocity in bridge opening 7.53 ft/s

Maximum WSPRO tube velocity at bridge 10.63 ft/s

Water-surface elevation at Approach section with bridge 90.89 ft

Water-surface elevation at Approach section without bridge 90.80 ft

Amount of backwater caused by bridge 0.09 ft

500-year discharge 4,150 ft³/s

Water-surface elevation at D/S bridge face 91.26 ft

Area of flow at D/S bridge face 425 ft²

Average velocity in bridge opening 9.77 ft/s

Maximum WSPRO tube velocity at bridge 13.90 ft/s

Water-surface elevation at Approach section with bridge 92.49 ft

Water-surface elevation at Approach section without bridge 91.81 ft

Amount of backwater caused by bridge 0.68 ft

Scour

Describe any special assumptions or considerations made in bridge scour analysis.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 5 and graphs of the scour depths are shown in figures 2 and 3 for the U/S and D/S bridge faces, respectively.

The site is located in the high-flow region of the north, central Piedmont of South Carolina. Contraction scour was analyzed by using the live-bed scour equation for the channel and the clear-water scour equation for the left and right overbank areas. The left and right overbank areas of the approach cross section are triangular in shape instead of rectangular. Therefore, the average depth of the respective flood plains was estimated by using the depth of flow at the centroids of these right triangles.

The more restrictive bridge face (D/S face of bridge) was used in the WSPRO and scour analyses. However, when comparing the U/S and D/S bridge face cross sections it was noted that the ground elevations at the bents were approximately 3 ft lower in the U/S bridge face because of a moderate change in cross-section geometry. Therefore, to assure the worst-case conditions for determining scour elevations, the calculated scour elevations were determined from the U/S bridge face as shown in tables 1 and 2 and in figure 2. A plot of the scour depths at the D/S bridge face is provided for information in figure 3.

It should be noted that the following pile tip/footing information was provided by the SCDOT bridge plans, file number 12.344 for Route SC 72 crossing Rocky Creek: the pile tip elevations for the piles that were added during the widening of the structure in 1956 and proposed construction elevations (no as-built elevations available) for the footings at the original structure built in 1928. The SCDOT bridge plans did not provide detailed

dimensions of the pier footings. The plans noted the proposed construction elevation for the base of the footings to be located at elevation 74.6 ft (USGS datum). The maximum pile tip elevation for the widened parts of the bridge were 70.5, 67.7, and 69.9 ft (USGS datum) for bents 2, 3, and 4, respectively. At the direction of the SCDOT (R. Williamson, oral commun. 6-93), the proposed construction elevations at the base of the pier footings is shown instead of the pile tip elevations in tables 1 and 2 and on figures 2 and 3.

Because the lack of detailed information and because the minimum ground surface elevation caused by the 100- and 500-year contraction scour is 4.6 and 3.7 ft above the base of the footing of bent 3, the local scour caused by exposed footings was not determined. Therefore, the 2.1-ft wide square concrete columns were used in the local pier-scour analyses.

The riprap on both abutments is slumped. Consequently, an analysis for abutment scour was made. The results of this analysis are presented in table 5.

Finally, the SCDOT bridge plans show subsurface rock at an approximate elevation of 78.8 ft (USGS) that could reduce the amount of scour at the site. For more information, see the plans in the pocket at the back of the report.

WSPRO INPUT FILE

```
WSPRO PROFILES -- STRUCTURE 124007200700,
T1
          ROCKY CREEK AT SC HWY 72, NEAR CHESTER
T2
           LEVEL II BRIDGE SCOUR ANALYSIS
Т3
J1
           * * * 0.85
*
           THIS SITE IS LOCATED IN THE HIGH FLOW REGION OF SOUTH
           CAROLINA. THEREFORE, THE METHODS DESCRIBED BY C.L. SANDERS, 12-93
           WERE USED TO ESTIMATE THE Q100 AND Q500 FLOWS.
*
            2740
                   4150
Q
            0.0039 0.0039
SK
            -196
TX
   TEMP
            ,0 102.0 60 91.4 103 87.2 130\87.1 175 87.9
GR
           224 89.3 261 88.6 297 88.2 302 85.5 304 85.5
GR
GR
           311 88.5 337 87.8 351 87.6 354 80.2 367 80.3
           380 80.0 383 88.6 393 88.9 438 87.3 486 87.2
GR
           556 89.2 609 92.3 653 93.0 697 99.1 729 102.7
GR
*
*
           THE CROSS SECTIONS DOWNSTREAM OF THE BRIDGE WERE DEVELOPED
           BY LOCATING THE SURVEYED SECTION AT THE APPROPRIATE SRD AND
*
           ADJUSTING THE ELEVATIONS BY THE VALLEY SLOPE.
XS
           -1000 * * * 0.0039
     T2
GT
           0.14 0.042 0.18
N
                           383
SA
                351
*
XS
           -500 * * * 0.0039
     T1
GT
           -100 * * * 0.0039
XS
     EXIT
GT
           0.14 0.042 0.18
N
                 351 383
SA
    FULV 0 * * * 0.0039
XS
GT
           0.14
                 0.042 0.18
N
                 351
                           383
SA
*
            THE DOWNSTREAM BRIDGE FACE WAS USED IN THE ANALYSIS BECAUSE
            IT WAS THE MORE RESTRICTIVE OF THE TWO BRIDGE FACES.
BR
    BRDGD
            0 97.0 15
GR
            0 97.0 1 96.4 10 93.3 18 89.0 25 86.8
            38 87.4 43 83.2 50 82.1 58 80.3 63 79.3
GR
            69 80.5 75 87.5 78 88.6 88 92.8 95 95.9
GR
            99 96.3 99 97.0 99.1 97.0 100 97.0 0 97.0
GR
           0.08 0.042
N
                             0.08
SA
                38 75
          79.6 2.1 83.7 2.1 83.7 4.2 85.0 4.2 85.0 6.4
PW 0
           3 30 2 99.9
```

CD

WSPRO INPUT FILE -- Continued

```
THE APPROACH CROSS SECTION WAS DEVELOPED FROM A CROSS SECTION THAT
            WAS SURVEYED JUST U/S OF AN OLD ROAD EMBANKMENT. THE CROSS SECTION
            WAS LOCATED AT THE APPROPRIATE SRD AND THE ELEVATIONS WERE ADJUSTED
            BY THE VALLEY SLOPE. THE OLD ROAD EMBANKMENT IS LOCATED 130 FT
            U/S OF THE BRIDGE, AT SRD 160.
*
*
     APP
            130
AS
            469
ΒP
                                                             92.2
              0 102.3
                        28
                            99.4
                                  157
                                        96.3
                                              212
                                                   95.1
                                                         336
GR
            378
                90.8
                       428 89.6
                                  477
                                        88.0
                                              502
                                                   86.7
                                                         505
                                                              79.5
GR
                                              532
                                                   82.4 534 87.7
                       521 80.5
                                  522
                                        81.6
            517
                80.2
GR
                                                  98.2 813 101.8
                       657 94.0 709
                                              763
            608 91.4
                                        96.2
GR
            0.:18
                        0.042
                                   0.18
N
                               534
                   502
SA
             90.34, ,90.34,2740
HP 1 BRDGD
HP 2 BRDGD
             90.55, ,90.55,2740
HP 1 APP
             90.89, ,90.89,2740
             90.89, ,90.89,2740
HP 2 APP
             91.26, ,91.26,4150
HP 1 BRDGD
             91.56, ,91.56,4150
HP 2 BRDGD
             92.49, ,92.49,4150
HP 1 APP
             92.49, ,92.49,4150
HP 2 APP
*
EΧ
ER
```

WSPRO OUTPUT

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS

*** RUN DATE & TIME: 01-14-94 10:08

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = BRDGD; SRD = 0

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	59.	2081.	22.	22.				549.
	2	295.	38953.	36.	41.				4812.
	3;	10.	231.	7.	7.				70.
90.34	,	364.	41265.	64.	71.	1.28	16.	82.	4334.

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS *** RUN DATE & TIME: 01-14-94 10:08

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = BRDGD; SRD = 0. WSEL LEW REW AREA K Q VEL 90.55 15.1 82.6 377.6 43226. 2740. 7.26 WSEL
 15.1
 36.4
 43.7
 45.9
 47.9

 58.4
 35.3
 16.1
 15.6
 14.9

 2.35
 3.88
 8.53
 8.81
 9.20
 X STA. A(I) V(I) 49.8 51.5 53.2 54.8 56.3 57.6 X STA.
 14.8
 14.5
 14.1
 13.9
 13.5

 9.24
 9.47
 9.74
 9.88
 10.18
 A(I) 10.18 V(I) X STA. A(I) 57.6 59.0 60.3 61.6 62.8 64.0
 13.7
 13.6
 13.3
 13.0
 12.9

 10.03
 10.08
 10.27
 10.51
 10.61
 V(I) X STA. 64.0 65.3 66.5 67.9 69.4 13.2 12.9 13.2 14.7 46.1 10.36 10.63 10.35 9.31 2.97 A(I) V(I)

WSPRO OUTPUT --Continued

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER

LEVEL II BRIDGE SCOUR ANALYSIS

*** RUN DATE & TIME: 01-14-94 10:08

CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APP ; SRD = 130.

WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR
1 226. 2741. 127. 127. 127.
2 308. 41999. 32. 41. 5434.
3 102. 1149. 64. 64. 729.
90.89 636. 45889. 222. 232. 3.26 375. 598. 3378.

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY
V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS *** RUN DATE & TIME: 01-14-94 10:08

VELOCITY DISTRIBUTION: ISEQ = 6; SECID = APP ; SRD = 130. WSEL LEW REW AREA K Q VEL 90.89 375.3 597.8 635.7 45889. 2740. 4.31 375.3 496.3 506.1 507.3 508.5 509.7 202.4 59.4 13.6 13.4 13.5 X STA. A(I) 0.68 2.31 10.09 10.23 10.18 V(I)
 509.7
 511.0
 512.2
 513.5
 514.8
 516.1

 13.7
 13.6
 13.9
 14.1
 14.0

 10.00
 10.09
 9.89
 9.73
 9.80
 X STA. A(I) V(I) 516.1 517.4 518.7 520.0 521.4 523.2 X STA. 14.0 13.8 13.9 15.0 16.1 9.81 9.90 9.88 9.14 8.52 A(I) V(I) X STA. 523.2 524.8 526.5 528.2 530.0 597.8 14.9 15.0 15.1 15.6 131.0 9.16 9.14 9.08 8.77 1.05 A(I) V(I)

WSPRO OUTPUT -- Continued

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS

*** RUN DATE & TIME: 01-14-94 10:08

CROSS-SECTION PROPERTIES: ISEQ = 5; SECID = BRDGD; SRD = 0.

WSEL SA# AREA K TOPW WETP ALPH LEW REW QCR
1 80. 3264. 23. 24. 833.
2 328. 46451. 36. 41. 5639.
3 17. 478. 9. 10. 138.
91.26 425. 50193. 68. 75. 1.34 14. 84. 5205.

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS *** RUN DATE & TIME: 01-14-94 10:08

VELOCITY DISTRIBUTION: ISEQ = 5; SECID = BRDGD; SRD = 0. WSEL LEW REW AREA K Q VEL 91.56 13.2 85.0 445.6 53294. 4150. 9.31 48.9 X STA. 13.2 32.8 42.5 44.8 46.9 65.3 47.4 19.3 17.8 17.4 A(I) 3.18 4.37 10.77 11.69 11.90 V(I) 48.9 50.8 52.5 54.2 55.8 57.3 17.3 16.3 16.5 16.2 15.7 12.01 12.73 12.61 12.80 13.19 X STA. A(I) V(I)
 57.3
 58.7
 60.1
 61.5
 62.8
 64.0

 15.7
 15.6
 15.3
 15.3
 14.9

 13.20
 13.27
 13.54
 13.56
 13.90
 X STA. A(I) V(I) X STA. 64.0 65.4 66.7 68.1 69.8 85.0 15.3 14.9 15.3 18.0 55.9 13.56 13.90 13.53 11.51 3.71 A(I) V(I)

WSPRO OUTPUT -- Continued

WSPRO	FEDERAL HIGHWAY	ADMINISTRATION	- U. S.	GEOLOGICAL SURVEY
V060188	MODEL FOR	WATER-SURFACE	PROFILE	COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS

*** RUN DATE & TIME: 01-14-94 10:08

CROSS-SECTION PROPERTIES: ISEQ = 6; SECID = APP ; SRD = 130.

WSEL	SA#	AREA	K	TOPW	WETP	ALPH	LEW	REW	QCR
	1	467.	7345.	178.	179.				4290.
	2	360.	54250.	32.	41.				6841.
	3	229.	3410.	95.	95.				2019.
92.49	:	1056.	65005.	305.	314.	5.02	324.	629.	4975.

WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V060188 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS

WSPRO PROFILES--STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS *** RUN DATE & TIME: 01-14-94 10:08

	VEL	OCITY DISTRIE	BUTION: ISEQ	= 6; SECID	= APP ;	SRD = 13	30.
		WSEL LE 92.49 323.	W REW 6 628.5 1	AREA 055.6 65005	K Q . 4150.	VEL 3.93	
	STA. A(I) V(I)	29	8.6 136	496.3 .4 74.1 52 2.80	17.7	17.2	
	STA. A(I) V(I)	1	.7.5 17	511.5 .4 17.7 95 11.71	18.0	17.9	515.8
	STA. A(I) V(I)	1	8.1 17	518.8 .9 18.0 57 11.54	21.0	18.8	523.8
x	STA. A(I) V(I)	523.8 1 10	525.6 9.1 19 .86 10.	527.4 .0 19.6 91 10.57	529.3 19.0 10.94	531.1 252.5 0.82	628.5

WSPRO OUTPUT -- Continued

FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY WSPRO MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS V060188 WSPRO PROFILES -- STRUCTURE 124007200700, ROCKY CREEK AT SC HWY 72, NEAR CHESTER LEVEL II BRIDGE SCOUR ANALYSIS *** RUN DATE & TIME: 01-14-94 10:08 LEW AREA CRWS XSID: CODE SRDL VHD $_{
m HF}$ EGL Q WSEL K ALPH SRD FLEN REW HO ERR FR# VEL ***** 78. 1001. 0.73 ***** 87.24 83.90 T2 :XS 2740. 86.51 43844. 6.22 **** ***** -1000. ***** 564. 0.84 78. :XS 500. 1006. 0.72 1.94 89.19 ****** 2740. T1 -500. 500. 564. 44026. 6.24 0.00 0.01 0.83 2,72 1007. 0.72 1.55 90.76 ****** EXIT :XS 400. 78. 2740. -100. 400. 564. 44045. 6.24 0.00 0.01 0.83 2.72 91.15 ****** FULV :FV 100. 78. 1016. 0.71 0.38 2740. 90.45 100. 564. 44363. 6.26 0.00 0.01 0.82 2.70 0. <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> 91.77 ***** APP 130. 378. 616. 0.97 0.49 2740. :AS 90.80 44984. 3.16 0.13 0.00 0.83 130. 130. 596. 4.45 <><<THE ABOVE RESULTS REFLECT "NORMAL" (UNCONSTRICTED) FLOW>>>> <><<RESULTS REFLECTING THE CONSTRICTED FLOW FOLLOW>>>> XSID: CODE SRDL LEW AREA VHD HFEGL CRWS WSEL 0 SRD FLEN REW K ALPH HO ERR FR# VEL 100. 0.88 0.41 88.70 BRDGD:BR 16. 364. 91.22 2740. 90.34 100. 82. 41222. 1.00 0.05 0.00 0.56 7.53 0. С TYPE PPCD FLOW P/A LSEL BLEN XLAB XRAB 97.00 ***** ***** ***** 0. 1. 0.999 0.133 XSID: CODE SRDL LEW AREA VHD HFEGL CRWS Q WSEL FLEN REW SRD K ALPH HO ERR FR# VEL APP 100. 375. 636. 0.94 0.41 91.83 87.42 2740. :AS 90.89 103. 598. 45924. 3.26 0.21 0.02 130. 0.81 4.30 M(G) ΚQ XLKO XRKO OTEL M(K) 0.692 0.037 44080. 474. 541. 90.53

<<<<END OF BRIDGE COMPUTATIONS>>>>

WSPRO OUTPUT --Continued

V060	O 188							EOLOGICA:		
	ROC LEV	CKY CREE VEL II E	EK AT SC BRIDGE S	TRUCTURE HWY 72, COUR ANA TIME: 01	NEAR LYSIS	CHESTE	lR.			
XSII			LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
T2 -	:XS * -1000. *	*****	66. 584.	1605. 66448.	0.71 6.83	**** ***	88.43 *****	86.78 0.68	4150. 2.59	87.72
r1	:XS -500.	500. 500.	66. 584.	1609. 66611.	0.71	1.95	90.38 0.01	****** 0.67	4150. 2.58	89.68
EXIT	:XS -100.	400. 400.	65. 584.	1611. 66674.	0.71 6.83	1.55	91.94 0.01	****** 0.67	4150. 2.58	91.24
TULV	:FV	100. 100.	65. 585.	1618. 66954.	0.70 6.83	0.39 0.00	92.34 0.01	****** 0.67 NSTRICTE	4150. 2.57	91.64
		FNTES	T,FR#,W OUND AT	SEL, CRWS	= 0. PP ":	85 REDU	0.98 CED DELT	ONTINUED 91.81 AY. 102.30	89.9	98
===]	115 WSEI						WSMIN = 14 1	CRWS. 02.30	89.98	
PP	130.	130.	348.	0.60			02.25	00.00		
	<<<		616.	56320.	4.27	0.42	0.00	89.98 0.98 NSTRICTEI	4.81	
		< <the a<="" td=""><td>616. BOVE RE</td><td>56320. SULTS RE</td><td>4.27 FLECT</td><td>0.42 "NORMA</td><td>0.00 L" (UNCO</td><td>0.98</td><td>4.81 O) FLOW>></td><td></td></the>	616. BOVE RE	56320. SULTS RE	4.27 FLECT	0.42 "NORMA	0.00 L" (UNCO	0.98	4.81 O) FLOW>>	
xsii		< <the a<="" td=""><td>616. BOVE RE</td><td>56320. SULTS REI</td><td>4.27 FLECT G THE VHD</td><td>0.42 "NORMA CONSTR</td><td>0.00 L" (UNCO</td><td>0.98 NSTRICTE</td><td>4.81 O) FLOW>></td><td></td></the>	616. BOVE RE	56320. SULTS REI	4.27 FLECT G THE VHD	0.42 "NORMA CONSTR	0.00 L" (UNCO	0.98 NSTRICTE	4.81 O) FLOW>>	
	O:CODE SRD O:BR	< <the a<="" td=""><td>616. BOVE RE SULTS R LEW REW</td><td>56320. SULTS REI EFLECTING AREA K 425.</td><td>4.27 FLECT G THE VHD ALPH 1.59</td><td>0.42 "NORMA CONSTR HF HO</td><td>0.00 L" (UNCO ICTED FL EGL ERR 92.85</td><td>0.98 NSTRICTEI OW FOLLOV CRWS</td><td>4.81 FLOW>> V>>>> VEL 4150.</td><td>>>>> WSEL</td></the>	616. BOVE RE SULTS R LEW REW	56320. SULTS REI EFLECTING AREA K 425.	4.27 FLECT G THE VHD ALPH 1.59	0.42 "NORMA CONSTR HF HO	0.00 L" (UNCO ICTED FL EGL ERR 92.85	0.98 NSTRICTEI OW FOLLOV CRWS	4.81 FLOW>> V>>>> VEL 4150.	>>>> WSEL
	O:CODE SRD O:BR O.	<the 100.="" 100.<="" <<<<re="" a="" flen="" srdl="" td=""><td>616. BOVE RE SULTS R LEW REW 14. 84.</td><td>56320. SULTS RESERVED AREA K 425. 50174.</td><td>4.27 FLECT G THE VHD ALPH 1.59 1.07</td><td>0.42 "NORMA CONSTR HF HO 0.51 0.39</td><td>0.00 L" (UNCO ICTED FL EGL ERR 92.85</td><td>0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB</td><td>4.81 FLOW>> V>>>> VEL 4150.</td><td>>>>> WSEL</td></the>	616. BOVE RE SULTS R LEW REW 14. 84.	56320. SULTS RESERVED AREA K 425. 50174.	4.27 FLECT G THE VHD ALPH 1.59 1.07	0.42 "NORMA CONSTR HF HO 0.51 0.39	0.00 L" (UNCO ICTED FL EGL ERR 92.85	0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB	4.81 FLOW>> V>>>> VEL 4150.	>>>> WSEL
BRDGI	D:CODE SRD D:BR 0. TYPE PP 3.	< <the 100.="" <<<<re="" a="" cd="" flen="" flow<="" srdl="" td=""><td>616. BOVE RE SULTS R LEW REW 14. 84. C 0.965</td><td>56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA</td><td>4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0</td><td>0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 ****</td><td>0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01</td><td>0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB</td><td>4.81 5) FLOW>> VEL 4150. 9.77</td><td>>>>> WSEL</td></the>	616. BOVE RE SULTS R LEW REW 14. 84. C 0.965	56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA	4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0	0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 ****	0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01	0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB	4.81 5) FLOW>> VEL 4150. 9.77	>>>> WSEL
BRDGI	O:CODE SRD O:BR O. TYPE PP 3. O:CODE SRD	< <the 0.="" 1.="" 100.="" 100.<="" <<<<re="" a="" cd="" flen="" flow="" srdl="" td=""><td>616. BOVE RE SULTS R LEW REW 14. 84. C 0.965 LEW REW 324.</td><td>56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA K 1056.</td><td>4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0 VHD ALPH 1.21</td><td>0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 **** HF HO</td><td>0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01 EN XLA ** ***** EGL ERR</td><td>0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB * ******</td><td>4.81 b) FLOW>> VEL 4150. 9.77</td><td>>>>> WSEL 91.26 WSEL</td></the>	616. BOVE RE SULTS R LEW REW 14. 84. C 0.965 LEW REW 324.	56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA K 1056.	4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0 VHD ALPH 1.21	0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 **** HF HO	0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01 EN XLA ** ***** EGL ERR	0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB * ******	4.81 b) FLOW>> VEL 4150. 9.77	>>>> WSEL 91.26 WSEL
BRDGI XSID	D:CODE SRD O:BR O. TYPE PP 3. D:CODE SRD :AS 130. M(G)	< <the 0.="" 1.="" 100.="" 100.<="" <<<<re="" a="" cd="" flen="" flow="" srdl="" td=""><td>616. BOVE RE SULTS R LEW REW 14. 84. C 0.965 LEW REW 324. 629.</td><td>56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA K 1056. 65016.</td><td>4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0 VHD ALPH 1.21 5.02</td><td>0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 **** HF HO 0.54 0.30</td><td>0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01 EN XLA ** **** EGL ERR 93.70 -0.01</td><td>0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB * ***** CRWS FR# 89.98</td><td>4.81 b) FLOW>> VEL 4150. 9.77</td><td>>>>> WSEL 91.26 WSEL</td></the>	616. BOVE RE SULTS R LEW REW 14. 84. C 0.965 LEW REW 324. 629.	56320. SULTS REI EFLECTING AREA K 425. 50174. P/A 0.127 AREA K 1056. 65016.	4.27 FLECT G THE VHD ALPH 1.59 1.07 LSE 97.0 VHD ALPH 1.21 5.02	0.42 "NORMA CONSTR HF HO 0.51 0.39 L BL 0 **** HF HO 0.54 0.30	0.00 L" (UNCO ICTED FL EGL ERR 92.85 -0.01 EN XLA ** **** EGL ERR 93.70 -0.01	0.98 NSTRICTEI OW FOLLOW CRWS FR# 90.58 0.71 B XRAB * ***** CRWS FR# 89.98	4.81 b) FLOW>> VEL 4150. 9.77	>>>> WSEL 91.26 WSEL

PIER SCOUR COMPUTATIONS

FOR

Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q100 No debris accumulation. Computed by NMH

	HYDRAULIC	VARIABLE	USED IN CSU EQUATION	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER	4	3	2	
PIER STATION (FT)	25	50	75	
LOCATION OF PIER	lfp	mcl	rtb	
Y1: DEPTH (FT)	6.9	11.3	11.3	
V1: VEL. (FPS)	3.9	9.6	9.6	
a: PIER WIDTH (FT)	2.1	2.1	2.1	
L: PIER LENGTH (FT)	6.0	6.0	6.0	
PIER SHAPE	1	1	1	
ATTACK ANGLE	15	15	15	
L: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE K1 (SHAPE COEF.)	1.00	1.00	1.00	
K2 (ANGLE COEF.)	1.31	1.31	1.31	
FROUDE NO.	0.26	0.50	0.50	
	COMPUTED	SCOUR DE	PTHS USING CSU EQUATION	
SCOUR DEPTH (FT)				
	4.68	7.37	7.37	
	4.68	7.37	7.37	
SCOUR DEPTH (FT) MAX SCOUR DEPTH (FT) "MAX SCOUR DEPTH" computed CSU scour of	4.68 5.14 includes a	7.37 8.10 n additio	7.37 8.10 aal 10 percent of the	
MAX SCOUR DEPTH (FT) "MAX SCOUR DEPTH" computed CSU scour of	4.68 5.14 includes and the second sec	7.37 8.10 n additio	7.37 8.10 al 10 percent of the in HEC 18	. 4

CONTRACTION SCOUR COMPUTATIONS

FOR

Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q100 No debris accumulation. Computed by NMH

LEFT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	138.
	=	19.3
MEDIAN GRAIN SIZE (FT)	=	0.0021
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	4.1
AVERAGE FLOOD PLAIN DEPTH (FT)	=	2.3
DEPTH OF CONTRACTION SCOUR (FT)	=	1.8

RIGHT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	15.
WIDTH OF CONTRACTED SECTION (FT)	=	2.9
MEDIAN GRAIN SIZE (FT)	=	0.0021
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	3.1
AVERAGE FLOOD PLAIN DEPTH (FT)	=	2.1
DEPTH OF CONTRACTION SCOUR (FT)	=	1.0

LIVE-BED SCOUR COMPUTATIONS

DISCHARGE (CFS) BOTTOM WIDTH (FT) MANNINGS n AVERAGE DEPTH (FT)	MAIN CHANNEL 2510. 32.0 0.042 10.6	CONTRACTED SECTION 2590. 31.5 0.042	
ENERGY SLOPE D50 (FT) FALL VELOCITY (FPS) K1 COEF. K2 COEF.		0.00590 0.0043 0.60 0.69 0.37	
COMPUTED DEPTH AT CONTRACTOR DEPTH AT MAIN CHANNEL (FT) DEPTH OF CONTRACTION SCOUR) = 11.0 = 10.6 = 0.4	

ABUTMENT SCOUR COMPUTATIONS

FOR

Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q100 No debris accumulation. Computed by NMH

So	LEFT ABUTMENT COUR COMPUTATIONS
ABUTMENT TYPE DISCHARGE BLOCKED BY ABUTMENT (CFS) AREA BLOCKED BY ABUTMENT (SQ FT) DEPTH OF FLOW AT ABUTMENT (FT) LENGTH OF ABUT. 90 DEG. TO FLOW (FT) ABUTMENT SKEW (DEG)	3 -SPILL THROUGH 122. 180.0 3.2 108.0
AJUSTED ABUTMENT LENGTH (FT) AVERAGE F/P VELOCITY U/S OF ABUT. (FE FROUDE NUMBER K1 COEF. K2 COEF.	56.3 0.7 0.067 0.6 1.0
DESIGN DEPTH OF SCOUR (FROELICH EQUAT	CION, 1989) (FT) = 5.8
	RIGHT ABUTMENT COUR COMPUTATIONS
ABUTMENT TYPE DISCHARGE BLOCKED BY ABUTMENT (CFS) AREA BLOCKED BY ABUTMENT (SQ FT) DEPTH OF FLOW AT ABUTMENT (FT) LENGTH OF ABUT. 90 DEG. TO FLOW (FT) ABUTMENT SKEW (DEG) AJUSTED ABUTMENT LENGTH (FT) AVERAGE F/P VELOCITY U/S OF ABUT. (FP FROUDE NUMBER K1 COEF. K2 COEF.	2.2 61.6 15

DESIGN DEPTH OF SCOUR (FROELICH EQUATION, 1989) (FT)

= 5.3

PIER SCOUR COMPUTATIONS

FOR

Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q500 No debris accumulation. Computed by NMH

	HYDRAULIC '	VARIABLES	USED IN CSU EQUATION					
PIER NUMBER PIER STATION (FT) LOCATION OF PIER Y1: DEPTH (FT) V1: VEL. (FPS) a: PIER WIDTH (FT) L: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE K1 (SHAPE COEF.) K2 (ANGLE COEF.) FROUDE NO.	1fp 7.9 4.4 2.1	50 mcl 12.3 12.5 2.1	rtb 12.3 12.5 2.1					
	COMPUTED	SCOUR DEE	PTHS USING CSU EQUATION					
SCOUR DEPTH (FT)	5.01	8.36	8.36					
MAX SCOUR DEPTH (FT)	5.51	9.20	9.20					
"MAX SCOUR DEPTH" includes an additional 10 percent of the computed CSU scour depth as recommended in HEC 18								
THE COMPUTED PIER SKE BY EXTRAPOLATING THE			CIENT WAS FOUND JE BACK TO 1 AT PIER NO.	4				
	THE COMPUTED PIER SKEW CORRECTION COEFFICIENT WAS FOUND BY EXTRAPOLATING THE LEFT END OF THE TABLE BACK TO 1 AT PIER NO. 3							
THE COMPUTED PIER SKE BY EXTRAPOLATING THE			CIENT WAS FOUND LE BACK TO 1 AT PIER NO.	2				

CONTRACTION SCOUR COMPUTATIONS

FOR

Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q500 No debris accumulation. Computed by NMH

LEFT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	270.
WIDTH OF CONTRACTED SECTION (FT)	=	19.3
MEDIAN GRAIN SIZE (FT)	=	0.0021
ŧ		
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	7.2
AVERAGE FLOOD PLAIN DEPTH (FT)	=	3.4
DEPTH OF CONTRACTION SCOUR (FT)	=	3.8

RIGHT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	40.
WIDTH OF CONTRACTED SECTION (FT)	=	2.9
MEDIAN GRAIN SIZE (FT)	=	0.0021
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	7.1
AVERAGE FLOOD PLAIN DEPTH (FT)	=	3.2
DEPTH OF CONTRACTION SCOUR (FT)	=	3.9

LIVE-BED SCOUR COMPUTATIONS

	MAIN CHANNEL	CONTRACTED SE	ECTION
DISCHARGE (CFS)	3460.	3840.	
BOTTOM WIDTH (FT)	32.0	31.5	5
MANNINGS n	0.042	0.0	142
AVERAGE DEPTH (FT)	12.2		
ENERGY SLOPE		0.00830	
D50 (FT)		0.0043	
FALL VELOCITY (FPS)		0.60	
K1 COEF.		0.69	
K2 COEF.		0.37	
COMPUTED DEPTH AT CONTRACT	red section (ft)	= 13.5	
DEPTH AT MAIN CHANNEL (FT)	· ·	= 12.2	
DEPTH OF CONTRACTION SCOU	R (FT)	= 1.3	

ABUTMENT SCOUR COMPUTATIONS

FOR

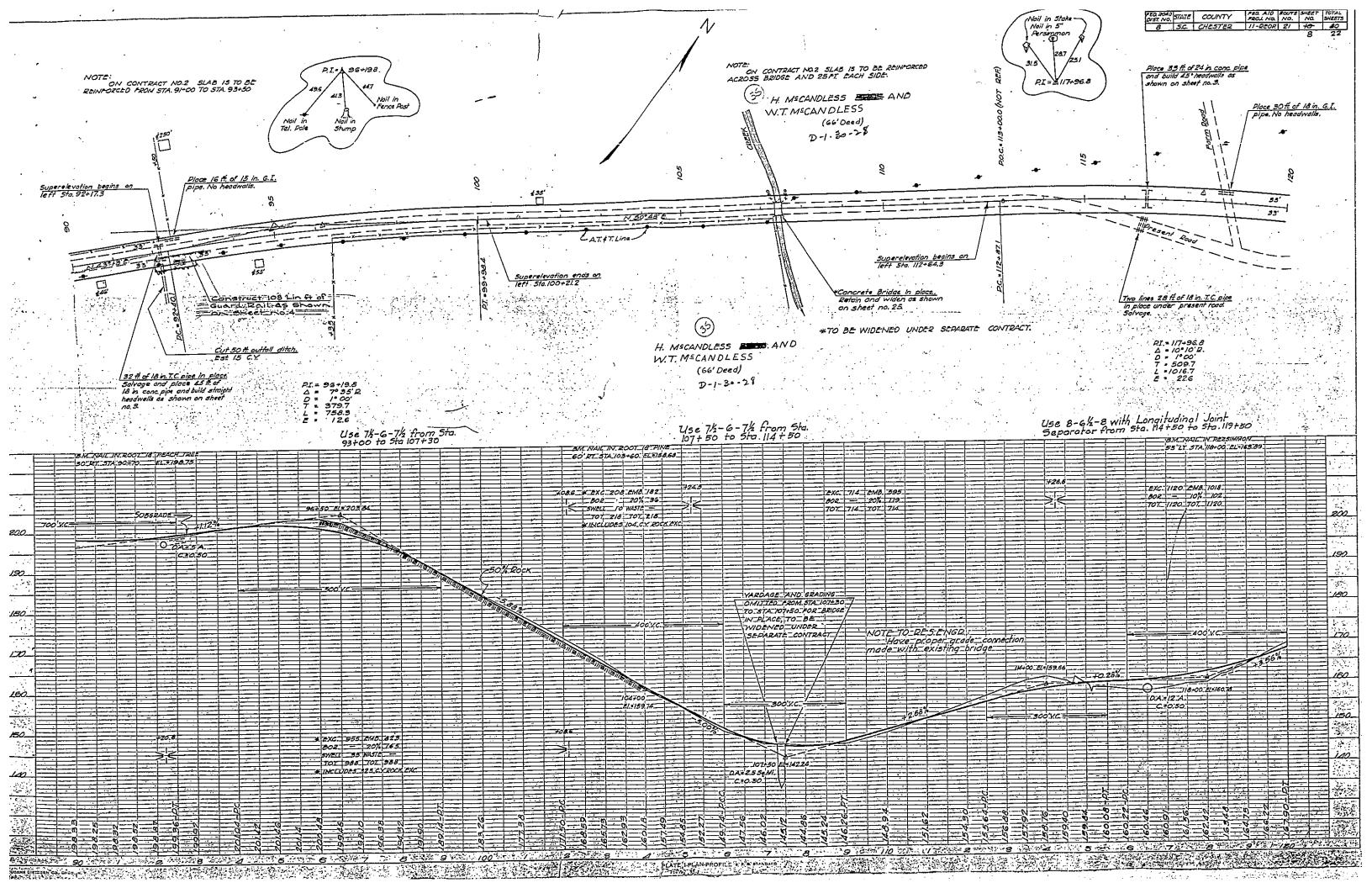
Rocky Creek at SC 72, Str. 124007200700, Chester Co., SC Q500 No debris accumulation. Computed by NMH

LEFT ABUTMENT SCOUR COMPUTATIONS

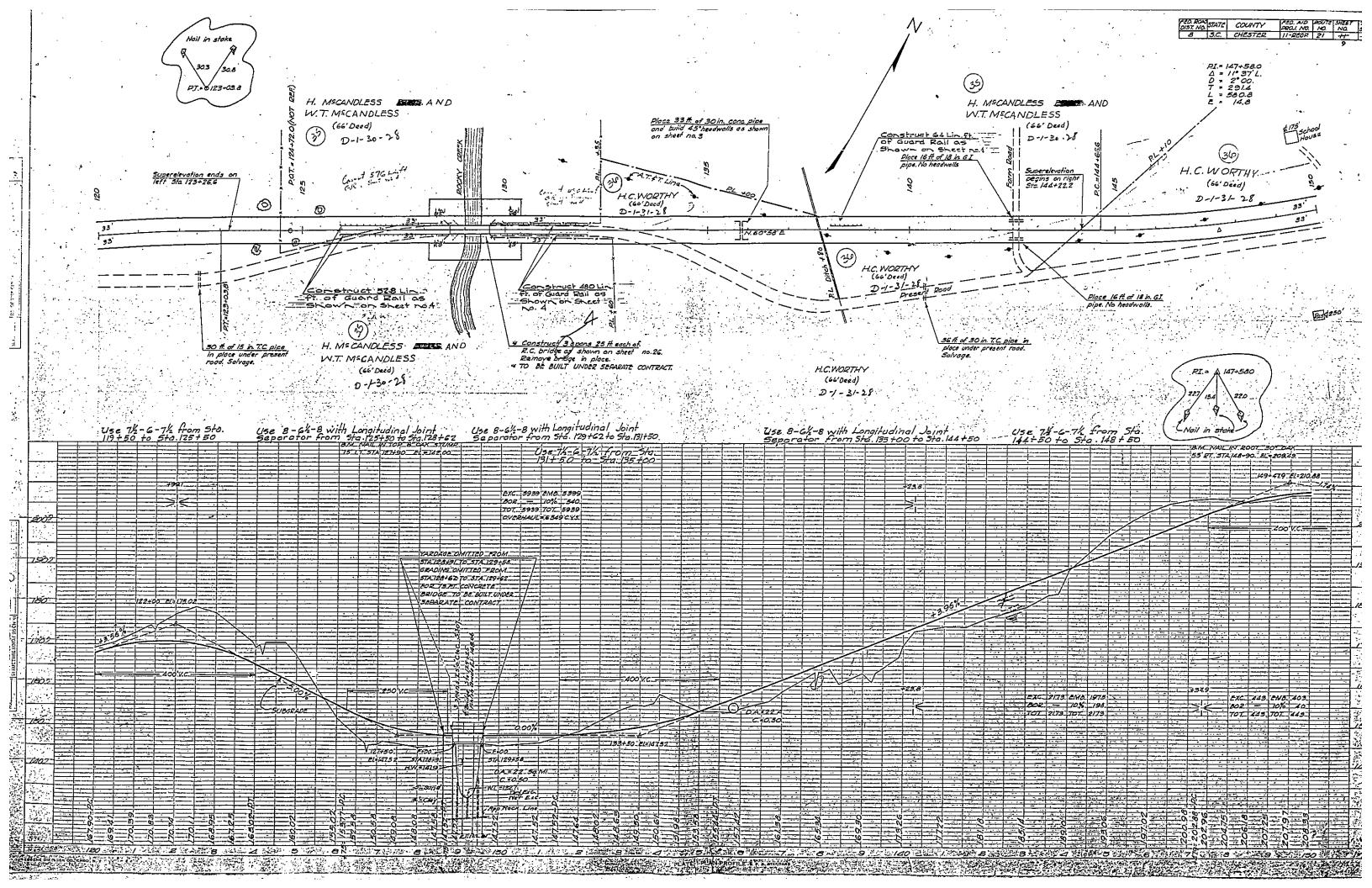
ABUTMENT TYPE DISCHARGE BLOCKED BY ABUTMENT (CFS) AREA BLOCKED BY ABUTMENT (SQ FT) DEPTH OF FLOW AT ABUTMENT (FT) LENGTH OF ABUT. 90 DEG. TO FLOW (FT) ABUTMENT SKEW (DEG)	3 -SPILL THROUGH 313. 368.0 4.3 159.0	
AJUSTED ABUTMENT LENGTH (FT) AVERAGE F/P VELOCITY U/S OF ABUT. (FPS) FROUDE NUMBER K1 COEF. K2 COEF.	85.6 0.9 0.072 0.6 1.0	
DESIGN DEPTH OF SCOUR (FROELICH EQUATION	N, 1989) (FT) =	8.1

RIGHT ABUTMENT SCOUR COMPUTATIONS

ABUTMENT TYPE DISCHARGE BLOCKED BY ABUTMENT (CFS) AREA BLOCKED BY ABUTMENT (SQ FT) DEPTH OF FLOW AT ABUTMENT (FT) LENGTH OF ABUT. 90 DEG. TO FLOW (FT) ABUTMENT SKEW (DEG)	3 -SPILL THROUGH 196. 239.0 3.2 92.1
AJUSTED ABUTMENT LENGTH (FT) AVERAGE F/P VELOCITY U/S OF ABUT. (FPS) FROUDE NUMBER K1 COEF. K2 COEF.	74.7 0.8 0.081 0.6 1.0


DESIGN DEPTH OF SCOUR (FROELICH EQUATION, 1989) (FT) = 6.6

П .					
				÷	


	L.,
	į
	Π
	Ų

	·				
÷					r ~
	•				
			:		
			, ;		
			: :		

			•
		:	
	··		
•			

			b
	·		ď
	•		
	•		
	, ,		
	·		
	· ·		
	· · · · · · ·		
	•		
	·.		

PILE RECORD ON DOCKET NO. 12.344 ROCKY CREEK

FED. ROAD STATE COUNTY COCKET ROUTE SHEET TOTAL NO. NO. SHEETS

3 S.C. Chesler 12344 72 32 57

PENETRATION PER BLOW: OF AN INCH. PILE RECORD DOCKET NO. 12.

	MUCK! CILL.	
	TVDE <i>Dro2</i>	
WEIGHT OF HAMMER 3,300.662	LENGTH NET FLEV FLEV GROUND GROUND PEN. PE	FALL OF BEARING PAY C.O. @ C.O.
ELEV. ORIG. PEN IN SERVING PAY C.O. @ C.O. @ DAT	BENT FOOTING PILE DIAM. DIAM. ORIG. BUILD-UP TOTAL C. O. LENGTH C. O. PILE TIP OR BOTTOM OR BELOW BLOW NO. NO. AT BUTT, AT TIP LENGTH OR SPLICE LENGTH C. O. LENGTH C. O. PILE TIP OR BOTTOM OR BELOW BLOW	
DIAM DIAM ORIG. BUILD-UP TOTAL LENGTH NET ELEV. GROUND GROUND PEN		
AT BUTT. AT TIP LENGTH OR SPLICE LENGTH C. O. TENGTH OF FOOTING FOOTING FOOTING		
256 Pth - 30.00 - 30.00 1.17 28.83 Mt.69 1/5.96 143.44 27.48 0.65" 15' 30.0 V 20.83 - 9 5 - 14 10" "H" - 30.00 - 30.00 1.17' 28.83 Mt.69 1/5.96 143.44 27.48 0.65" " 30.0 V 20.83 - 30.0 V 20.0 V 20.83 - 30.0 V 20.0		
-9 5 - 44 10° H" - 30.00' - 30.00' 2.50' 27.50' + 1/17.79 143.44 26.44 0.53' " 30.04 27.50' - 30.00' 27.79' " 1/7.00 143.44 26.44 0.53' " 32.4 27.79'		
1 5 - Rf " - 30.00' - 30.00' 2.21' 27.79' " 1/7.00 /43.44 26.41 0.53' " 32.41' 22.79' " 1/7.00 /43.44 30/4 0.65" " 30.00' 31.50'		
30,00 - 30,00 - 31,50		
- 1 - 4 " - 31.50" - 31.50" 0.00" 31.50" " 1/3.30 /43.44 30./4 0.65" " 30.40" " 50.3V 30.40" " 7 1/4.40 /35.64 21.24 0.63" " 50.3V 30.40" " 7 1/4.40 /35.64 21.24 0.63" " 30.40" " 30.40" " 30.40" " 7 1/4.40 /35.64 21.24 0.63" " 7 30.40" " 7 30		
" 2 - 4½ " - 30.40° /- 30.40° 0.00° 30.40° 1/4.70° 135.31 " 3 - 4½ " - 34.70° 2.00° 36.70° 0.00° 36.70′ 108./2 13/.74 23.62 0.65° / " 30.00° 38.70° 118.05° 135.34 17.29 0.65° / " 30.00° 26.73° " 30.00° 26.73° " 30.00° 3.27° 26.73° " 1/8.05° 135.34 17.29 0.65° / " 30.00° 26.73° " 30.00° 3.27° 26.73° 26.73° " 30.00° 3.27° 26.73° " 30.00° 3.27° 26.73° " 30.00° 3.27° 26.73° " 30.00° 26.73° 26.73° " 30.00° 26.73° " 30.		
" 3 - 4.1. " - 39.70° Z.00° 36.70° 0.00° 36.70° " 108.12 131.74 23.22 9.00° " 30.01 24.73° " 30.		
" 4 - 44 1 - 30.001 - 30.001 Z.12^ 2788 1 1/6.91 135.24 18.33 0,58° " 3/.2 V 27.88 V		
1 4 - Pt " - 30.00" / - 30.00" (12.0" 15.00		
" 4 — 14 " — 30.00" 1 — 30.00" Z.12" Z288" " 1/6.9 135 Z4		
" 2 - Rf. " - 30.00° - 30.00° - 31.2		
		1 / 1/201
		1/1/12
		294. 32'
	308,60 /628 292.32	29432
	TOTAL [308.60] [628] [292.32]	NOTES:
	NOTES CONCERNING ANY UNUSUAL FOUNDATION	PAY LENGTH SHOULD INCLUDE ALLOWANCE FOR SPLICING STEEL
	BENT NO. FOOTING FILE No.	THE AND ANY OTHER AUTHORIZES
	2 - Lt. Pile driven 5" behw cut-off Depore minimum boaring obtained - 2'splice nemssary	ALLOWANCES. NUMBERING PILES:
	3 - Lt Bir driven 2' behav cut-off Desore minimum county st	A EVETCH OF BENT OR FOULTRY
		BE DRAWN ON THIS SHEET AND FI
		STREAM TO BE SHOWN.
···│┃ <u> └───┴────</u> ────────────────────────────	1	DENETRATION PER BLOW:

	!			
			•	·
		•		
•				
•	:			

